Sandino Christopher M, Cheng Joseph Y, Chen Feiyu, Mardani Morteza, Pauly John M, Vasanawala Shreyas S
Department of Electrical Engineering, Stanford University, Stanford, CA, 94305 USA.
Stanford University.
IEEE Signal Process Mag. 2020 Jan;37(1):111-127. doi: 10.1109/MSP.2019.2950433. Epub 2020 Jan 17.
Compressed sensing (CS) reconstruction methods leverage sparse structure in underlying signals to recover high-resolution images from highly undersampled measurements. When applied to magnetic resonance imaging (MRI), CS has the potential to dramatically shorten MRI scan times, increase diagnostic value, and improve overall patient experience. However, CS has several shortcomings which limit its clinical translation such as: 1) artifacts arising from inaccurate sparse modelling assumptions, 2) extensive parameter tuning required for each clinical application, and 3) clinically infeasible reconstruction times. Recently, CS has been extended to incorporate deep neural networks as a way of learning complex image priors from historical exam data. Commonly referred to as unrolled neural networks, these techniques have proven to be a compelling and practical approach to address the challenges of sparse CS. In this tutorial, we will review the classical compressed sensing formulation and outline steps needed to transform this formulation into a deep learning-based reconstruction framework. Supplementary open source code in Python will be used to demonstrate this approach with open databases. Further, we will discuss considerations in applying unrolled neural networks in the clinical setting.
压缩感知(CS)重建方法利用基础信号中的稀疏结构,从高度欠采样的测量中恢复高分辨率图像。当应用于磁共振成像(MRI)时,CS有潜力显著缩短MRI扫描时间、提高诊断价值并改善患者总体体验。然而,CS有几个缺点限制了其临床应用,例如:1)因不准确的稀疏建模假设而产生的伪影;2)每个临床应用都需要进行广泛的参数调整;3)临床上不可行的重建时间。最近,CS已扩展到纳入深度神经网络,以此从历史检查数据中学习复杂图像先验知识的一种方式。这些技术通常被称为展开神经网络,已被证明是解决稀疏CS挑战的一种引人注目的实用方法。在本教程中,我们将回顾经典的压缩感知公式,并概述将该公式转换为基于深度学习的重建框架所需的步骤。将使用Python中的补充开源代码,通过开放数据库来演示这种方法。此外,我们将讨论在临床环境中应用展开神经网络时的注意事项。