Rao Ziyan, Zhang Min, Huang Shaodong, Wu Chenyang, Zhou Yuheng, Zhang Weijie, Lin Xia, Zhao Dongyu
Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China.
Genome Res. 2025 Aug 1;35(8):1842-1858. doi: 10.1101/gr.280235.124.
Cancer long noncoding RNAs (lncRNAs) have been identified by experimental and in silico methods. However, current approaches for identifying cancer lncRNAs are not sufficient and effective. To uncover them, we focus on the core cancer driver lncRNAs, which directly interact with cancer driver protein-coding genes (PCGs). We investigate various aspects of cancer lncRNAs, including their expression patterns, genomic locations, and direct interactions with cancer driver PCGs, and developed a pipeline to identify candidate cancer driver lncRNAs. Finally, we validate the reliability of potential cancer driver lncRNAs through functional analysis of bioinformatics data and CRISPR-Cas9 knockout experiments. We find that cancer lncRNAs are more concentrated in cancer driver topologically associated domains (CDTs), and CDT is an important feature in identifying cancer lncRNAs. Moreover, cancer lncRNAs show a high tendency to be coexpressed with and bind to cancer driver PCGs. Utilizing these distinctive characteristics, we develop a pipeline ncer river opologically ssociated omains (CADTAD) to identify candidate cancer driver lncRNAs in pan-cancer, including 256 oncogenic lncRNAs, 177 tumor-suppressive lncRNAs, and 75 dual-function lncRNAs, as well as in three individual cancer types, and validate their cancer-related functions. More importantly, the function of 10 putative cancer driver lncRNAs in prostate cancer is subsequently validated to influence cancer phenotype through cell studies. In light of these findings, our study offers a new perspective from the 3D genome to study the roles of lncRNAs in cancer. Furthermore, we provide a valuable set of potential lncRNAs that could deepen our understanding of the oncogenic mechanism of cancer driver lncRNAs.
癌症长链非编码RNA(lncRNAs)已通过实验和计算机方法得以鉴定。然而,目前用于鉴定癌症lncRNAs的方法并不充分且有效。为了发现它们,我们聚焦于核心癌症驱动lncRNAs,其直接与癌症驱动蛋白编码基因(PCGs)相互作用。我们研究了癌症lncRNAs的各个方面,包括它们的表达模式、基因组位置以及与癌症驱动PCGs的直接相互作用,并开发了一套流程来鉴定候选癌症驱动lncRNAs。最后,我们通过生物信息学数据的功能分析和CRISPR-Cas9基因敲除实验验证了潜在癌症驱动lncRNAs的可靠性。我们发现癌症lncRNAs更集中于癌症驱动拓扑相关结构域(CDTs),且CDT是鉴定癌症lncRNAs的一个重要特征。此外,癌症lncRNAs显示出与癌症驱动PCGs共表达并结合的高度倾向。利用这些独特特征,我们开发了一个流程——癌症驱动拓扑相关结构域(CADTAD),以在泛癌中鉴定候选癌症驱动lncRNAs,包括256个致癌lncRNAs、177个抑癌lncRNAs和75个双功能lncRNAs,以及在三种个体癌症类型中鉴定,并验证它们与癌症相关的功能。更重要的是,随后通过细胞研究验证了10个假定的前列腺癌驱动lncRNAs的功能会影响癌症表型。鉴于这些发现,我们的研究从三维基因组角度为研究lncRNAs在癌症中的作用提供了一个新视角。此外,我们提供了一组有价值的潜在lncRNAs,这可能会加深我们对癌症驱动lncRNAs致癌机制的理解。