Suppr超能文献

不同宠物示踪剂的动态全身3D宠物图像自动分割与预处理方法的比较

Comparison of Automatic Segmentation and Preprocessing Approaches for Dynamic Total-Body 3D Pet Images with Different Pet Tracers.

作者信息

Jaakkola Maria K, Rivera Pineda Marcela Xiomara, Díaz Rafael, Rantala Maria, Jalo Anna, Kärpijoki Henri, Saari Teemu, Maaniitty Teemu, Keller Thomas, Louhi Heli, Wahlroos Saara, Haaparanta-Solin Merja, Solin Olof, Hentilä Jaakko, Helin Jatta S, Nissinen Tuuli A, Eskola Olli, Rajander Johan, Knuuti Juhani, Virtanen Kirsi A, Hannukainen Jarna C, López-Picón Francisco, Klén Riku

机构信息

Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland.

Biomedical Imaging, Åbo Akademi University, Turku, Finland.

出版信息

J Imaging Inform Med. 2025 May 27. doi: 10.1007/s10278-025-01540-4.

Abstract

Segmentation is a routine step in PET image analysis, and few automatic tools have been developed for it. However, excluding supervised methods with their own limitations, they are typically designed for older, small images and the implementations are no longer publicly available. Here, we test if different commonly used building blocks of the automatic methods work with large modern total-body PET images. Dynamic total-body images from five different datasets are used for evaluation purposes, and the tested algorithms cover wide range of different preprocessing approaches and unsupervised segmentation methods. The validation is done by comparing the obtained segments to manually drawn ones using Jaccard index, Dice score, precision, and recall as measures of match. Out of the 17 considered segmentation methods, only 6 were computationally usable and provided enough segments for the needs of this study. Among these six feasible methods, hierarchical clustering and HDBSCAN had systematically the lowest Jaccard indices with the manual segmentations, whereas both GMM and k-means had median Jaccards of 0.58 over different organ segments and data sets. GMM outperformed k-means in human data, but with rat images, the two methods had equally good performance k-means having slightly stronger precision and GMM recall. We conclude that most of the commonly used unsupervised segmentation methods are computationally infeasible with the modern PET images, classical clustering algorithms k-means and especially Gaussian mixture model being the most promising candidates for further method development. Even though preprocessing, particularly denoising, improved the results, small organs remained difficult to segment.

摘要

分割是PET图像分析中的常规步骤,目前针对该步骤开发的自动工具很少。然而,除了有自身局限性的监督方法外,这些工具通常是为较旧的小图像设计的,且其实现不再公开可用。在此,我们测试自动方法中不同常用构建模块是否适用于现代大型全身PET图像。来自五个不同数据集的动态全身图像用于评估目的,所测试的算法涵盖了广泛的不同预处理方法和无监督分割方法。通过使用杰卡德指数、骰子系数、精确率和召回率作为匹配度量,将获得的分割结果与手动绘制的结果进行比较来完成验证。在17种考虑的分割方法中,只有6种在计算上可行,并能为本研究的需求提供足够的分割结果。在这六种可行方法中,层次聚类和HDBSCAN与手动分割相比,杰卡德指数系统地最低,而高斯混合模型(GMM)和k均值在不同器官分割和数据集上的杰卡德指数中位数均为0.58。在人体数据中,GMM的表现优于k均值,但在大鼠图像中,这两种方法的性能相当,k均值的精确率略强,GMM的召回率略强。我们得出结论,大多数常用的无监督分割方法在处理现代PET图像时在计算上不可行,经典聚类算法k均值,尤其是高斯混合模型是进一步方法开发最有前景的候选方法。尽管预处理,特别是去噪,改善了结果,但小器官仍然难以分割。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验