Dewalle-Vignion Anne-Sophie, Yeni Nathanaëlle, Petyt Grégory, Verscheure Leslie, Huglo Damien, Béron Amandine, Adib Salim, Lion Georges, Vermandel Maximilien
CHU Lille, Lille, France.
Nucl Med Commun. 2012 Jan;33(1):34-42. doi: 10.1097/MNM.0b013e32834d736f.
[¹⁸F]-Fluorodeoxyglucose PET has become an essential technique in oncology. Accurate segmentation is important for treatment planning. With the increasing number of available methods, it will be useful to establish a reliable evaluation tool.
Five methods for [F]-fluorodeoxyglucose PET image segmentation (MIP-based, Fuzzy C-means, Daisne, Nestle and the 42% threshold-based approach) were evaluated on non-Hodgkin's lymphoma lesions by comparing them with manual delineations performed by a panel of experts. The results were analyzed using different similarity measures. Intraoperator and interoperator variabilities were also studied.
The maximum of intensity projection-based method provided results closest to the manual delineations set [binary Jaccard index mean (SD) 0.45 (0.15)]. The fuzzy C-means algorithm yielded slightly less satisfactory results. The application of a 42% threshold-based approach yielded results furthest from the manual delineations [binary Jaccard index mean (SD) 0.38 (0.16)]; the Daisne and the Nestle methods yielded intermediate results. Important intraoperator and interoperator variabilities were demonstrated.
A simple assessment framework based on comparisons with manual delineations was proposed. The use of a set of manual delineations performed by five different experts as the reference seemed to be suitable to take the intraoperator and the interoperator variabilities into account. The online distribution of the data set generated in this study will make it possible to evaluate any new segmentation method.
[¹⁸F]-氟脱氧葡萄糖正电子发射断层扫描(PET)已成为肿瘤学中的一项重要技术。准确的分割对于治疗规划至关重要。随着可用方法数量的增加,建立一个可靠的评估工具将很有用。
通过将五种[F]-氟脱氧葡萄糖PET图像分割方法(基于最大强度投影法、模糊C均值法、戴斯内法、雀巢法和基于42%阈值法)与一组专家进行的手动描绘进行比较,对非霍奇金淋巴瘤病变进行评估。使用不同的相似性度量对结果进行分析。还研究了操作者内部和操作者之间的变异性。
基于最大强度投影的方法提供的结果最接近手动描绘结果[二元杰卡德指数均值(标准差)0.45(0.15)]。模糊C均值算法产生的结果稍欠满意。基于42%阈值法的应用产生的结果与手动描绘结果相差最远[二元杰卡德指数均值(标准差)0.38(0.16)];戴斯内法和雀巢法产生的结果居中。证明了操作者内部和操作者之间存在重要的变异性。
提出了一个基于与手动描绘比较的简单评估框架。使用由五位不同专家进行的一组手动描绘作为参考似乎适合考虑操作者内部和操作者之间的变异性。本研究中生成的数据集的在线发布将使评估任何新的分割方法成为可能。