Gerner Nathalie, Pickerle David, Höller Yvonne, Hartl Arnulf
Institute of Ecomedicine, Paracelsus Medical University, 5020 Salzburg, Austria.
Institute for Diagnostic and Interventional Radiology, Favoriten Hospital, 1100 Vienna, Austria.
Brain Sci. 2025 Apr 23;15(5):432. doi: 10.3390/brainsci15050432.
Evidence-based design aims to create healthy environments grounded in scientific data, yet the influence of spatial qualities on cognitive processes remains underexplored. Advances in neuroscience offer promising tools to address this gap while meeting both scientific and practical demands. Consumer-grade mobile EEG devices are increasingly used; however, their lack of transparency complicates output interpretation. Well-established EEG indicators from cognitive neuroscience may offer a more accessible and interpretable alternative.
This feasibility study explored the sensitivity of five established EEG power band ratios to cognitive shifts in response to subtle environmental design experiences. Twenty participants completed two crossover sessions in an office-like setting with nature-inspired versus urban-inspired design elements. Each session included controlled phases of focused on-screen cognitive task and off-screen breaks.
Factorial analyses revealed no significant interaction effects of cognitive state and environmental exposure on EEG outcomes. Nonetheless, frontal (θ/β) and frontocentral (β/[α + θ]) ratios showed distinct patterns across cognitive states, with more pronounced contrasts in the nature-inspired compared to the urban-inspired design conditions. Conversely, occipital ([θ + α]/β), (θ/α), and (β/α) ratios remained consistent across exposures. Data triangulation with autonomic nervous system responses and performance metrics supported these observations.
The findings suggest that EEG power band ratios can capture brain-environment interactions. However, limitations of consumer-grade EEG devices challenge both scientific rigour and practical application. Refining methodological reliability could improve interpretability, supporting more transparent and robust data-driven design decisions.
循证设计旨在基于科学数据创造健康的环境,但空间质量对认知过程的影响仍未得到充分探索。神经科学的进展提供了有前景的工具来弥补这一差距,同时满足科学和实际需求。消费级移动脑电图(EEG)设备的使用越来越广泛;然而,其缺乏透明度使得输出结果的解读变得复杂。认知神经科学中成熟的EEG指标可能提供一种更易于理解和解释的替代方法。
这项可行性研究探讨了五个既定的EEG功率带比率对因微妙的环境设计体验而产生的认知变化的敏感性。20名参与者在一个类似办公室的环境中完成了两个交叉实验环节,该环境分别融入了自然灵感和城市灵感的设计元素。每个环节都包括专注于屏幕认知任务的受控阶段和屏幕外休息阶段。
因子分析显示,认知状态和环境暴露对EEG结果没有显著的交互作用。尽管如此,额叶(θ/β)和额中央(β/[α + θ])比率在不同认知状态下呈现出不同的模式,与城市灵感设计条件相比,自然灵感设计条件下的对比更为明显。相反,枕叶([θ + α]/β)、(θ/α)和(β/α)比率在不同暴露条件下保持一致。通过自主神经系统反应和性能指标进行的数据三角测量支持了这些观察结果。
研究结果表明,EEG功率带比率可以捕捉大脑与环境的相互作用。然而,消费级EEG设备的局限性对科学严谨性和实际应用都提出了挑战。提高方法的可靠性可以改善可解释性,支持更透明、更可靠的数据驱动设计决策。