ElShamey Essam A, Yang Xiaomeng, Yang Jiazhen, Pu Xiaoying, Yang Li'E, Ke Changjiao, Zeng Yawen
Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China.
Rice Research Department, Field Crops Research Institute, Agricultural Research Center, Cairo 12619, Egypt.
Int J Mol Sci. 2025 Jun 27;26(13):6225. doi: 10.3390/ijms26136225.
The occurrence of anthocyanins in rice () and barley () varies among cultivars, with pigmented varieties (e.g., black rice and purple barley) accumulating higher concentrations due to genetic and environmental factors. The biosynthesis of anthocyanins is regulated by a complex network of structural and regulatory genes. Key enzymes in the pathway include chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), and UDP-glucose flavonoid 3-O-glucosyltransferase (UFGT). These genes are tightly controlled by transcription factors (TFs) from the MYB, bHLH (basic helix-loop-helix), and WD40 repeat families, which form the MBW () regulatory complex. In rice, transcription factors such as , , and (Purple Leaf) interact with partners (e.g., , ) to activate anthocyanin biosynthesis. Similarly, in barley, genes (e.g., ) coordinate with TFs to regulate pigment accumulation. Environmental cues, such as light, temperature, and nutrient availability, further modulate these TFs, influencing the production of anthocyanin. Understanding the genetic and molecular mechanisms behind the biosynthesis of anthocyanins in rice and barley provides opportunities for the development of biofortification strategies that enhance their nutritional value.
水稻()和大麦()中花青素的含量因品种而异,由于遗传和环境因素,有色品种(如黑米和紫大麦)积累的花青素浓度更高。花青素的生物合成受结构基因和调控基因组成的复杂网络调控。该途径中的关键酶包括查尔酮合酶(CHS)、查尔酮异构酶(CHI)、黄烷酮3-羟化酶(F3H)、二氢黄酮醇4-还原酶(DFR)、花青素合酶(ANS)和UDP-葡萄糖类黄酮3-O-葡萄糖基转移酶(UFGT)。这些基因受到来自MYB、bHLH(碱性螺旋-环-螺旋)和WD40重复家族的转录因子(TFs)的严格控制,这些转录因子形成MBW()调控复合体。在水稻中,、和(紫叶)等转录因子与伙伴(如、)相互作用,激活花青素的生物合成。同样,在大麦中,基因(如)与TFs协同调节色素积累。光照、温度和养分有效性等环境信号进一步调节这些TFs,影响花青素的产生。了解水稻和大麦中花青素生物合成背后的遗传和分子机制,为开发提高其营养价值的生物强化策略提供了机会。