Suppr超能文献

生物学信息矩阵分解:一种用于增强药物重新定位的人工智能驱动框架。

Biology-Informed Matrix Factorization: An AI-Driven Framework for Enhanced Drug Repositioning.

作者信息

Wang Yangyang, Wang Yaping, Hu Ya, Wang Jihan

机构信息

School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China.

Yan'an Medical College, Yan'an University, Yan'an 716000, China.

出版信息

Biology (Basel). 2025 May 15;14(5):549. doi: 10.3390/biology14050549.

Abstract

Advances in artificial intelligence (AI) and intelligent computing have significantly accelerated drug discovery by enabling accurate modeling of complex biomedical relationships. Among these efforts, drug repositioning-identifying novel therapeutic uses for approved or investigational drugs-offers a cost-effective and time-efficient alternative to de novo drug development. While non-negative matrix factorization (NMF) has been widely adopted for uncovering latent drug-disease associations, conventional implementations often neglect the biological context that underpins these relationships. In this work, we propose a novel NMF-based drug repositioning model that incorporates biological context (NMFIBC), which integrates drug and disease similarity networks through graph-regularized optimization to enhance predictive performance. This design enhances both the robustness and interpretability of association prediction. Extensive benchmarking on multiple gold-standard datasets demonstrates that NMFIBC outperforms existing methods across a range of metrics, including AUC, precision, and F1-score. Moreover, case studies involving clinically relevant drugs validate the biological plausibility of the predicted associations using public databases such as DrugBank, CTD, and KEGG. The proposed framework provides a powerful, context-aware AI strategy for discovering actionable insights in drug repositioning research.

摘要

人工智能(AI)和智能计算的进步通过实现复杂生物医学关系的精确建模,显著加速了药物发现。在这些努力中,药物重新定位——确定已批准或正在研究的药物的新治疗用途——为从头开始的药物开发提供了一种经济高效且节省时间的替代方案。虽然非负矩阵分解(NMF)已被广泛用于揭示潜在的药物-疾病关联,但传统方法往往忽略了支撑这些关系的生物学背景。在这项工作中,我们提出了一种基于NMF的新型药物重新定位模型,该模型纳入了生物学背景(NMFIBC),它通过图正则化优化整合药物和疾病相似性网络,以提高预测性能。这种设计增强了关联预测的稳健性和可解释性。在多个金标准数据集上进行的广泛基准测试表明,NMFIBC在包括AUC、精确率和F1分数在内的一系列指标上优于现有方法。此外,涉及临床相关药物的案例研究使用DrugBank、CTD和KEGG等公共数据库验证了预测关联的生物学合理性。所提出的框架为在药物重新定位研究中发现可操作的见解提供了一种强大的、上下文感知的AI策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48a7/12108717/384bca1ff1e8/biology-14-00549-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验