School of Computer Science, University of Windsor, 401 Sunset Avenue, N9B 3P4, Windsor, Ontario, Canada.
Bioinformatics. 2022 Feb 7;38(5):1369-1377. doi: 10.1093/bioinformatics/btab826.
Drug repurposing is a potential alternative to the traditional drug discovery process. Drug repurposing can be formulated as a recommender system that recommends novel indications for available drugs based on known drug-disease associations. This article presents a method based on non-negative matrix factorization (NMF-DR) to predict the drug-related candidate disease indications. This work proposes a recommender system-based method for drug repurposing to predict novel drug indications by integrating drug and diseases related data sources. For this purpose, this framework first integrates two types of disease similarities, the associations between drugs and diseases, and the various similarities between drugs from different views to make a heterogeneous drug-disease interaction network. Then, an improved non-negative matrix factorization-based method is proposed to complete the drug-disease adjacency matrix with predicted scores for unknown drug-disease pairs.
The comprehensive experimental results show that NMF-DR achieves superior prediction performance when compared with several existing methods for drug-disease association prediction.
The program is available at https://github.com/sshaghayeghs/NMF-DR.
Supplementary data are available at Bioinformatics online.
药物再利用是传统药物发现过程的一种潜在替代方法。药物再利用可以被构造成一种推荐系统,该系统基于已知的药物-疾病关联,为现有药物推荐新的适应症。本文提出了一种基于非负矩阵分解(NMF-DR)的方法,用于预测与药物相关的候选疾病适应症。这项工作提出了一种基于推荐系统的药物再利用方法,通过整合药物和疾病相关数据源来预测新的药物适应症。为此,该框架首先整合了两种类型的疾病相似性,即药物和疾病之间的关联,以及来自不同视角的药物之间的各种相似性,以构建一个异构的药物-疾病交互网络。然后,提出了一种改进的基于非负矩阵分解的方法,用于完成药物-疾病邻接矩阵,并对未知的药物-疾病对进行预测评分。
综合实验结果表明,与几种现有的药物-疾病关联预测方法相比,NMF-DR 具有优越的预测性能。
该程序可在 https://github.com/sshaghayeghs/NMF-DR 上获得。
补充数据可在生物信息学在线获得。