Suppr超能文献

使用机器学习对不平衡的胎心监护数据进行分类以早期检测胎儿健康状况

Early Detection of Fetal Health Conditions Using Machine Learning for Classifying Imbalanced Cardiotocographic Data.

作者信息

Nazli Irem, Korbeko Ertugrul, Dogru Seyma, Kugu Emin, Sahingoz Ozgur Koray

机构信息

Biomedical Engineering Department, Biruni University, Istanbul 34015, Turkey.

Computer Engineering Department, Bursa Technical University, Bursa 16310, Turkey.

出版信息

Diagnostics (Basel). 2025 May 15;15(10):1250. doi: 10.3390/diagnostics15101250.

Abstract

Cardiotocography (CTG) is widely used in obstetrics to monitor fetal heart rate and uterine contractions. It helps detect early signs of fetal distress. However, manual interpretation of CTG can be time-consuming and may vary between clinicians. Recent advances in machine learning provide more efficient and consistent alternatives for analyzing CTG data. This study aims to investigate the classification of fetal health using various machine learning models to facilitate early detection of fetal health conditions. This study utilized a tabular dataset comprising 2126 patient records and 21 features. To classify fetal health outcomes, various machine learning algorithms were employed, including CatBoost, Decision Tree, ExtraTrees, Gradient Boosting, KNN, LightGBM, Random Forest, SVM, ANN and DNN. To address class imbalance and enhance model performance, the Synthetic Minority Oversampling Technique (SMOTE) was employed. Among the tested models, the LightGBM algorithm achieved the highest performance, boasting a classification accuracy of 90.73% and, more notably, a balanced accuracy of 91.34%. This superior balanced accuracy highlights LightGBM's effectiveness in handling imbalanced datasets, outperforming other models in ensuring fair classification across all classes. This study highlights the potential of machine learning models as reliable tools for fetal health classification. The findings emphasize the transformative impact of such technologies on medical diagnostics. Additionally, the use of SMOTE effectively addressed dataset imbalance, further enhancing the reliability and applicability of the proposed approach.

摘要

胎心宫缩图(CTG)在产科中被广泛用于监测胎儿心率和子宫收缩。它有助于检测胎儿窘迫的早期迹象。然而,CTG的人工解读可能耗时且临床医生之间可能存在差异。机器学习的最新进展为分析CTG数据提供了更高效和一致的替代方法。本研究旨在使用各种机器学习模型来研究胎儿健康的分类,以促进胎儿健康状况的早期检测。本研究使用了一个包含2126条患者记录和21个特征的表格数据集。为了对胎儿健康结果进行分类,采用了各种机器学习算法,包括CatBoost、决策树、极端随机树、梯度提升、K近邻、LightGBM、随机森林、支持向量机、人工神经网络和深度神经网络。为了解决类别不平衡问题并提高模型性能,采用了合成少数过采样技术(SMOTE)。在测试的模型中,LightGBM算法表现最佳,分类准确率达到90.73%,更值得注意的是,平衡准确率为91.34%。这种卓越的平衡准确率凸显了LightGBM在处理不平衡数据集方面的有效性,在确保所有类别的公平分类方面优于其他模型。本研究突出了机器学习模型作为胎儿健康分类可靠工具的潜力。研究结果强调了此类技术对医学诊断的变革性影响。此外,SMOTE的使用有效解决了数据集不平衡问题,进一步提高了所提方法的可靠性和适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8017/12110323/e8d149710240/diagnostics-15-01250-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验