Suppr超能文献

使用相位差检测算法量化自闭症谱系障碍中的身体运动同步性:迈向一种新型行为生物标志物。

Quantifying Body Motion Synchrony in Autism Spectrum Disorder Using a Phase Difference Detection Algorithm: Toward a Novel Behavioral Biomarker.

作者信息

Kwon Jinhwan, Kotani Hiromi

机构信息

Department of Education, Kyoto University of Education, Kyoto 612-8522, Japan.

Kyoto City Child Welfare Center Clinic, Kyoto 612-8434, Japan.

出版信息

Diagnostics (Basel). 2025 May 16;15(10):1268. doi: 10.3390/diagnostics15101268.

Abstract

: Nonverbal synchrony-the temporal coordination of physical behaviors such as head movement and gesture-is a critical component of effective social communication. Individuals with autism spectrum disorder (ASD) are often described as having impairments in such synchrony, but objective and scalable tools to measure these disruptions remain limited. This study aims to assess body motion synchrony in ASD using phase-based features as potential markers of social timing impairments. : We applied a phase difference detection algorithm to high-resolution triaxial accelerometer data obtained during structured, unidirectional verbal communication. A total of 72 participants (36 typically developing TD-TD and 36 TD-ASD) were divided into dyads. ASD participants always assumed the listener role, enabling the isolation of receptive synchrony. Four distribution-based features-synchrony activity, directionality, variability, and coherence-were extracted from the phase difference data to assess synchrony dynamics. : Compared to the TD group, the ASD group exhibited significantly lower synchrony activity (ASD: 5.96 vs. TD: 9.63 times/min, = 0.0008, Cohen's = 1.23), greater temporal variability (ASD: 384.4 ms vs. TD: 311.1 ms, = 0.0036, = 1.04), and reduced coherence (ASD: 0.13 vs. TD: 0.81, = 0.036, = 0.73). Although the mean phase difference did not differ significantly between groups, the ASD group displayed weaker and more irregular synchrony patterns, indicating impaired temporal stability. : Our findings highlight robust impairments in nonverbal head motion synchrony in ASD, not only in frequency but also in terms of temporal stability and convergence. The use of phase-based synchrony features provides a continuous, high-resolution, language-independent metric for social timing. These metrics offer substantial potential as behavioral biomarkers for diagnostic support and intervention monitoring in ASD.

摘要

非言语同步——诸如头部运动和手势等身体行为的时间协调——是有效社会沟通的关键组成部分。自闭症谱系障碍(ASD)患者通常被描述为在这种同步方面存在缺陷,但用于测量这些干扰的客观且可扩展的工具仍然有限。本研究旨在使用基于相位的特征作为社会时间缺陷的潜在标志物来评估ASD中的身体运动同步。

我们将相位差检测算法应用于在结构化、单向言语交流期间获得的高分辨率三轴加速度计数据。总共72名参与者(36名发育正常的TD-TD和36名TD-ASD)被分成对子。ASD参与者总是扮演倾听者的角色,从而能够分离接受性同步。从相位差数据中提取了四个基于分布的特征——同步活动、方向性、变异性和相干性——以评估同步动态。

与TD组相比,ASD组表现出显著更低的同步活动(ASD:5.96次/分钟 vs. TD:9.63次/分钟, = 0.0008,科恩氏 = 1.23)、更大的时间变异性(ASD:384.4毫秒 vs. TD:311.1毫秒, = 0.0036, = 1.04)以及更低的相干性(ASD:0.13 vs. TD:0.81, = 0.036, = 0.73)。尽管两组之间的平均相位差没有显著差异,但ASD组显示出更弱且更不规则的同步模式,表明时间稳定性受损。

我们的研究结果突出了ASD中非言语头部运动同步存在严重缺陷,不仅在频率方面,而且在时间稳定性和收敛性方面。基于相位的同步特征的使用为社会时间提供了一种连续、高分辨率、与语言无关的度量。这些度量作为行为生物标志物在ASD的诊断支持和干预监测方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cb4/12110654/e18eb5aa03f7/diagnostics-15-01268-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验