Suppr超能文献

用于人工视觉应用的多模块视网膜装置的开发与评估

Development and Evaluation of Multi-Module Retinal Devices for Artificial Vision Applications.

作者信息

Tso Kuang-Chih, Sunaga Yoshinori, Nakanishi Yuki, Terasawa Yasuo, Haruta Makito, Sasagawa Kiyotaka, Ohta Jun

机构信息

Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma 6300192, Japan.

Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 6300192, Japan.

出版信息

Micromachines (Basel). 2025 May 15;16(5):580. doi: 10.3390/mi16050580.

Abstract

Artificial retinal devices require a high-density electrode array and mechanical flexibility to effectively stimulate retinal cells. However, designing such devices presents significant challenges, including the need to conform to the curvature of the eyeball and cover a large area using a single platform. To address these issues, we developed a parylene-based multi-module retinal device (MMRD) integrating a complementary metal-oxide semiconductor (CMOS) system. The proposed device is designed for suprachoroidal transretinal stimulation, with each module comprising a parylene-C thin-film substrate, a CMOS chip, and a ceramic substrate housing seven platinum electrodes. The smart CMOS system significantly reduces wiring complexity, enhancing the device's practicality. To improve fabrication reliability, we optimized the encapsulation process, introduced multiple silane coupling modifications, and utilized polyvinyl alcohol (PVA) for easier detachment in flip-chip bonding. This study demonstrates the fabrication and evaluation of the MMRD through in vitro and in vivo experiments. The device successfully generated the expected current stimulation waveforms in both settings, highlighting its potential as a promising candidate for future artificial vision applications.

摘要

人工视网膜设备需要高密度电极阵列和机械灵活性,以有效刺激视网膜细胞。然而,设计此类设备面临重大挑战,包括需要贴合眼球曲率并使用单一平台覆盖大面积。为解决这些问题,我们开发了一种集成互补金属氧化物半导体(CMOS)系统的聚对二甲苯基多模块视网膜设备(MMRD)。所提出的设备专为脉络膜上视网膜刺激而设计,每个模块包括一个聚对二甲苯-C薄膜基板、一个CMOS芯片和一个容纳七个铂电极的陶瓷基板。智能CMOS系统显著降低了布线复杂性,提高了设备的实用性。为提高制造可靠性,我们优化了封装工艺,引入了多种硅烷偶联改性,并使用聚乙烯醇(PVA)以便在倒装芯片键合中更易于分离。本研究通过体外和体内实验展示了MMRD的制造和评估。该设备在两种设置下均成功产生了预期的电流刺激波形,突出了其作为未来人工视觉应用有前景候选者的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a5f/12114173/5279a3c953d4/micromachines-16-00580-g001.jpg

相似文献

1
Development and Evaluation of Multi-Module Retinal Devices for Artificial Vision Applications.
Micromachines (Basel). 2025 May 15;16(5):580. doi: 10.3390/mi16050580.
2
Laboratory investigation of microelectronics-based stimulators for large-scale suprachoroidal transretinal stimulation (STS).
J Neural Eng. 2007 Mar;4(1):S85-91. doi: 10.1088/1741-2560/4/1/S10. Epub 2007 Feb 26.
3
In vivo stimulation on rabbit retina using CMOS LSI-based multi-chip flexible stimulator for retinal prosthesis.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:5791-4. doi: 10.1109/IEMBS.2007.4353663.
4
A multi-chip-architecture based flexible stimulation device for retinal prosthesis with a flip-chip packaging technique.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2920-3. doi: 10.1109/IEMBS.2006.260794.
9
Characterization of thin film Parylene C device curvature and the formation of helices via thermoforming.
J Micromech Microeng. 2023 Sep 1;33(9):095007. doi: 10.1088/1361-6439/acdc33. Epub 2023 Jul 27.
10
Transretinal electrical stimulation with a suprachoroidal multichannel electrode in rabbit eyes.
Jpn J Ophthalmol. 2004 May-Jun;48(3):256-61. doi: 10.1007/s10384-004-0055-1.

本文引用的文献

2
A Second-Generation (44-Channel) Suprachoroidal Retinal Prosthesis: A Single-Arm Clinical Trial of Feasibility.
Ophthalmol Sci. 2024 May 28;5(1):100525. doi: 10.1016/j.xops.2024.100525. eCollection 2025 Jan-Feb.
4
A Second-Generation (44-Channel) Suprachoroidal Retinal Prosthesis: Interim Clinical Trial Results.
Transl Vis Sci Technol. 2021 Aug 12;10(10):12. doi: 10.1167/tvst.10.10.12.
5
Monitoring Cortical Response and Electrode-Retina Impedance Under Epiretinal Stimulation in Rats.
IEEE Trans Neural Syst Rehabil Eng. 2021;29:1178-1187. doi: 10.1109/TNSRE.2021.3090904. Epub 2021 Jun 29.
6
An update on retinal prostheses.
Clin Neurophysiol. 2020 Jun;131(6):1383-1398. doi: 10.1016/j.clinph.2019.11.029. Epub 2019 Dec 10.
7
Improved visual acuity using a retinal implant and an optimized stimulation strategy.
J Neural Eng. 2019 Dec 23;17(1):016018. doi: 10.1088/1741-2552/ab5299.
8
Characteristics of prosthetic vision in rats with subretinal flat and pillar electrode arrays.
J Neural Eng. 2019 Oct 30;16(6):066027. doi: 10.1088/1741-2552/ab34b3.
9
Advances in retinal prosthesis systems.
Ther Adv Ophthalmol. 2019 Jan 17;11:2515841418817501. doi: 10.1177/2515841418817501. eCollection 2019 Jan-Dec.
10
Techniques and Considerations in the Microfabrication of Parylene C Microelectromechanical Systems.
Micromachines (Basel). 2018 Aug 22;9(9):422. doi: 10.3390/mi9090422.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验