Suppr超能文献

从机器学习角度分析冠状动脉搭桥术和主动脉瓣置换术后谵妄的关键预测因素

Analyzing Key Predictors of Postoperative Delirium Following Coronary Artery Bypass Grafting and Aortic Valve Replacement: A Machine Learning Perspective.

作者信息

Stošić Marija, Perić Velimir, Milić Dragan, Lazarević Milan, Živadinović Jelena, Stojiljković Vladimir, Kamenov Aleksandar, Nikolić Aleksandar, Golubović Mlađan

机构信息

Clinic for Cardiac Surgery, University Clinical Center Nis, 18000 Nis, Serbia.

Faculty of Medicine, University of Nis, 18000 Nis, Serbia.

出版信息

Medicina (Kaunas). 2025 May 13;61(5):883. doi: 10.3390/medicina61050883.

Abstract

: Postoperative delirium (POD) is a frequent and severe complication following cardiac surgery, particularly in high-risk patients undergoing coronary artery bypass grafting (CABG) and aortic valve replacement (AVR). Despite extensive research, predicting POD remains challenging due to the multifactorial and often non-linear nature of its risk factors. This study aimed to improve POD prediction using an interpretable machine learning approach and to explore the combined effects of clinical, biochemical, and perioperative variables. : This study included 131 patients who underwent CABG or AVR. POD occurrence was assessed using standard diagnostic criteria. Clinical, biochemical, and perioperative variables were collected, including patient age, sedation type, and mechanical ventilation status. Machine learning analysis was performed using an XGBoost classifier, with model interpretation achieved through SHapley Additive exPlanations (SHAP). Univariate logistic regression was applied to identify significant predictors, while SHAP analysis revealed variable interactions. : POD occurred in 34.3% of patients (n = 45). Patients who developed POD were significantly older (67.7 ± 6.5 vs. 64.5 ± 8.7 years, = 0.020). Sedation with mechanical ventilation and the type of sedative used were strongly associated with POD (both < 0.001). Sedation during mechanical ventilation showed the strongest association (OR = 2520.0; 95% CI: 80.9-78,506.7; < 0.00001). XGBoost classifier achieved excellent performance (AUC = 0.998, accuracy = 97.6%, F1 score = 0.976). SHAP analysis identified sedation, mechanical ventilation, and their interactions with fibrinogen, troponin I, leukocyte parameters, and lung infection as key predictors. : This study demonstrates that an interpretable machine learning approach can enhance POD prediction, providing insights into the combined impact of multiple clinical, biochemical, and perioperative factors. Integration of such models into perioperative workflows may enable early identification of high-risk patients and support individualized preventive strategies.

摘要

术后谵妄(POD)是心脏手术后常见且严重的并发症,尤其是在接受冠状动脉旁路移植术(CABG)和主动脉瓣置换术(AVR)的高危患者中。尽管进行了广泛研究,但由于其风险因素具有多因素且往往是非线性的性质,预测POD仍然具有挑战性。本研究旨在使用可解释的机器学习方法改善POD预测,并探讨临床、生化和围手术期变量的综合影响。 本研究纳入了131例行CABG或AVR的患者。使用标准诊断标准评估POD的发生情况。收集了临床、生化和围手术期变量,包括患者年龄、镇静类型和机械通气状态。使用XGBoost分类器进行机器学习分析,并通过SHapley加性解释(SHAP)实现模型解释。应用单因素逻辑回归来识别显著预测因素,而SHAP分析揭示了变量之间的相互作用。 POD发生在34.3%的患者中(n = 45)。发生POD的患者年龄显著更大(67.7±6.5岁对64.5±8.7岁,P = 0.020)。机械通气时的镇静以及所用镇静剂的类型与POD密切相关(均P < 0.001)。机械通气期间的镇静显示出最强的关联(OR = 2520.0;95%CI:80.9 - 78506.7;P < 0.00001)。XGBoost分类器表现出色(AUC = 0.998,准确率 = 97.6%,F1分数 = 0.976)。SHAP分析确定镇静、机械通气及其与纤维蛋白原、肌钙蛋白I、白细胞参数和肺部感染的相互作用为关键预测因素。 本研究表明,可解释的机器学习方法可以增强POD预测,深入了解多种临床、生化和围手术期因素的综合影响。将此类模型整合到围手术期工作流程中可以早期识别高危患者,并支持个性化预防策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验