Suppr超能文献

缩短住院时间的策略:证据与挑战

Strategies to Reduce Hospital Length of Stay: Evidence and Challenges.

作者信息

Hirani Rahim, Podder Dhruba, Stala Olivia, Mohebpour Ryan, Tiwari Raj K, Etienne Mill

机构信息

School of Medicine, New York Medical College, Valhalla, NY 10595, USA.

Graduate School of Biomedical Sciences, New York Medical College, Valhalla, NY 10595, USA.

出版信息

Medicina (Kaunas). 2025 May 20;61(5):922. doi: 10.3390/medicina61050922.

Abstract

Hospital length of stay (HLOS) is a critical healthcare metric influencing patient outcomes, resource utilization, and healthcare costs. While reducing HLOS can improve hospital efficiency and patient throughput, it also poses risks such as premature discharge, increased readmission rates, and potential compromise of patient safety. This literature review synthesizes current evidence on the determinants of HLOS, including patient-specific factors such as demographics, comorbidities, and socioeconomic status, as well as hospital-related factors like admission route, resource allocation, and institutional policies. We also examine the relationship between HLOS and key clinical outcomes, including mortality, readmission rates, and healthcare-associated infections. Additionally, we evaluate predictive modeling approaches, including artificial intelligence and machine learning, for forecasting HLOS and guiding early intervention strategies. While interventions such as enhanced recovery after surgery (ERAS) protocols, multidisciplinary care teams, and structured discharge planning have demonstrated efficacy in reducing HLOS, their success varies based on healthcare setting, patient complexity, and resource availability. Predictive analytics, incorporating clinical and non-clinical variables, offer promising avenues for improving hospital efficiency, yet may carry risks related to data quality and model bias. Given the impact of HLOS on clinical and economic outcomes, targeted interventions and predictive models should be applied cautiously, with future research focusing on refining personalized discharge strategies and addressing disparities across diverse patient populations.

摘要

住院时间(HLOS)是一个关键的医疗指标,会影响患者的治疗结果、资源利用和医疗成本。虽然缩短住院时间可以提高医院效率和患者周转率,但也存在风险,如过早出院、再入院率增加以及患者安全可能受到影响。这篇文献综述综合了目前关于住院时间决定因素的证据,包括患者特定因素,如人口统计学特征、合并症和社会经济地位,以及与医院相关的因素,如入院途径、资源分配和机构政策。我们还研究了住院时间与关键临床结果之间的关系,包括死亡率、再入院率和医疗相关感染。此外,我们评估了预测建模方法,包括人工智能和机器学习,用于预测住院时间并指导早期干预策略。虽然诸如术后加速康复(ERAS)方案、多学科护理团队和结构化出院计划等干预措施已证明在缩短住院时间方面有效,但其成功程度因医疗环境、患者复杂性和资源可用性而异。纳入临床和非临床变量的预测分析为提高医院效率提供了有前景的途径,但可能存在与数据质量和模型偏差相关的风险。鉴于住院时间对临床和经济结果的影响,应谨慎应用有针对性的干预措施和预测模型,未来的研究应侧重于完善个性化出院策略并解决不同患者群体之间的差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验