van Reenen Alexander, de Jong Arthur M, den Toonder Jaap M J, Prins Menno W J
Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands.
Lab Chip. 2014 Jun 21;14(12):1966-86. doi: 10.1039/c3lc51454d. Epub 2014 May 7.
The demand for easy to use and cost effective medical technologies inspires scientists to develop innovative lab-on-chip technologies for point-of-care in vitro diagnostic testing. To fulfill medical needs, the tests should be rapid, sensitive, quantitative, and miniaturizable, and need to integrate all steps from sample-in to result-out. Here, we review the use of magnetic particles actuated by magnetic fields to perform the different process steps that are required for integrated lab-on-chip diagnostic assays. We discuss the use of magnetic particles to mix fluids, to capture specific analytes, to concentrate analytes, to transfer analytes from one solution to another, to label analytes, to perform stringency and washing steps, and to probe biophysical properties of the analytes, distinguishing methodologies with fluid flow and without fluid flow (stationary microfluidics). Our review focuses on efforts to combine and integrate different magnetically actuated assay steps, with the vision that it will become possible in the future to realize integrated lab-on-chip biosensing assays in which all assay process steps are controlled and optimized by magnetic forces.
对易于使用且具有成本效益的医疗技术的需求促使科学家们开发创新的芯片实验室技术,用于即时体外诊断测试。为满足医疗需求,这些测试应具备快速、灵敏、定量且可小型化的特点,并且需要整合从进样到出结果的所有步骤。在此,我们综述了利用磁场驱动的磁性颗粒来执行集成芯片实验室诊断分析所需的不同处理步骤。我们讨论了磁性颗粒在混合流体、捕获特定分析物、浓缩分析物、将分析物从一种溶液转移到另一种溶液、标记分析物、执行严格性和洗涤步骤以及探测分析物的生物物理特性方面的应用,区分了有流体流动和无流体流动(固定微流控)的方法。我们的综述重点关注将不同的磁性驱动分析步骤进行组合和整合的努力,期望未来能够实现集成芯片实验室生物传感分析,其中所有分析过程步骤都由磁力控制和优化。