Xu Shengjie, Xie Lingxi, Dai Rujie, Lyu Zehua
School of Software Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China.
Int J Mol Sci. 2025 May 19;26(10):4859. doi: 10.3390/ijms26104859.
Antibody-drug conjugates (ADCs) are promising cancer therapeutics, but optimizing their cytotoxic payloads remains challenging. We present DumplingGNN, a novel hybrid Graph Neural Network architecture for predicting ADC payload activity and toxicity. Integrating MPNN, GAT, and GraphSAGE layers, DumplingGNN captures multi-scale molecular features using both 2D and 3D structural information. Evaluated on a comprehensive ADC payload dataset and MoleculeNet benchmarks, DumplingGNN achieves state-of-the-art performance, including BBBP (96.4% ROC-AUC), ToxCast (78.2% ROC-AUC), and PCBA (88.87% ROC-AUC). On our specialized ADC payload dataset, it demonstrates 91.48% accuracy, 95.08% sensitivity, and 97.54% specificity. Ablation studies confirm the hybrid architecture's synergy and the importance of 3D information. The model's interpretability provides insights into structure-activity relationships. DumplingGNN's robust toxicity prediction capabilities make it valuable for early safety evaluation and biomedical regulation. As a research prototype, DumplingGNN is being considered for integration into Omni Medical, an AI-driven drug discovery platform currently under development, demonstrating its potential for future practical applications. This advancement promises to accelerate ADC payload design, particularly for Topoisomerase I inhibitor-based payloads, and improve early-stage drug safety assessment in targeted cancer therapy development.
抗体药物偶联物(ADCs)是很有前景的癌症治疗药物,但优化其细胞毒性载荷仍然具有挑战性。我们提出了DumplingGNN,这是一种用于预测ADC载荷活性和毒性的新型混合图神经网络架构。DumplingGNN整合了MPNN、GAT和GraphSAGE层,利用二维和三维结构信息捕捉多尺度分子特征。在一个全面的ADC载荷数据集和MoleculeNet基准上进行评估,DumplingGNN取得了领先的性能,包括BBBP(96.4%的ROC-AUC)、ToxCast(78.2%的ROC-AUC)和PCBA(88.87%的ROC-AUC)。在我们专门的ADC载荷数据集上,它展示了91.48%的准确率、95.08%的灵敏度和97.54%的特异性。消融研究证实了混合架构的协同作用以及三维信息的重要性。该模型的可解释性为结构-活性关系提供了见解。DumplingGNN强大的毒性预测能力使其在早期安全性评估和生物医学监管中具有价值。作为一个研究原型,DumplingGNN正被考虑集成到Omni Medical中,Omni Medical是一个目前正在开发的人工智能驱动的药物发现平台,展示了其未来实际应用的潜力。这一进展有望加速ADC载荷设计,特别是基于拓扑异构酶I抑制剂的载荷,并改善靶向癌症治疗开发中的早期药物安全性评估。