Gao Yanyu, Chen Xueyang, Zhang Yunjie, Dong Xue-Hui, Yu Qianqian, Wang LinGe
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou 510640, China.
Molecules. 2025 May 15;30(10):2169. doi: 10.3390/molecules30102169.
Traditional iodine-based polyvinyl alcohol (PVA) polarizers encounter considerable durability challenges, especially in humid conditions, due to poor moisture resistance. This study presents an innovative organic-inorganic composite film composed of poly(methyl methacrylate) (PMMA) and carbon nanotubes (CNTs), fabricated via electrospinning, solvent vapor annealing (SVA), and uniaxial stretching. Pre-aligned PMMA/CNT composite fibers were electrospun and underwent SVA to stabilize the structure and reduce inter-fiber porosity. Further uniaxial stretching aligned the CNTs, enhancing optical anisotropy and polarization performance. The optimized parameters, 45 min of SVA and 75% stretching strain, produced composite films with a polarization degree exceeding 60%, which was combined with exceptional moisture resistance (<2% weight variation under 90% relative humidity). The integration of CNTs enhanced mechanical stability while preserving alignment during post-processing, thereby tackling the crucial challenge of scalable nanomaterial orientation. This study provides a scalable, cost-effective approach for developing durable polarizing materials with enhanced performance for optical devices in demanding environments.
传统的碘基聚乙烯醇(PVA)偏光器由于耐湿性差,在耐久性方面面临着相当大的挑战,尤其是在潮湿环境中。本研究提出了一种由聚甲基丙烯酸甲酯(PMMA)和碳纳米管(CNT)组成的创新型有机-无机复合薄膜,通过静电纺丝、溶剂蒸汽退火(SVA)和单轴拉伸制备而成。预取向的PMMA/CNT复合纤维经静电纺丝后进行SVA处理,以稳定结构并减少纤维间孔隙率。进一步的单轴拉伸使碳纳米管排列整齐,增强了光学各向异性和偏振性能。优化后的参数,即45分钟的SVA处理和75%的拉伸应变,制备出的复合薄膜偏振度超过60%,同时具有出色的耐湿性(在90%相对湿度下重量变化<2%)。碳纳米管的整合增强了机械稳定性,同时在后处理过程中保持了排列,从而解决了可扩展纳米材料取向这一关键挑战。本研究为开发在苛刻环境下具有增强性能的耐用偏光材料提供了一种可扩展、经济高效的方法,用于光学器件。