Huang Lianghao, Ni Wen, Jia Yaru, Zhu Minqing, Yang Tiantian, Yu Mingchao, Zhang Jiaxiang
Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
Pharmaceutical Products Research and Development Center, Marine Biomedical Research Institute of Qingdao, Qingdao 266137, China.
Pharmaceutics. 2025 Apr 25;17(5):568. doi: 10.3390/pharmaceutics17050568.
Hot-melt extrusion (HME) offers a solvent-free, scalable approach for manufacturing pharmaceutical co-crystals (CCs), aligning with the industry's shift to continuous manufacturing (CM). However, challenges like undefined yield optimization, insufficient risk management, and limited process analytical technology (PAT) integration hinder its industrial application. This study aimed to develop a proof-of-concept HME platform for CCs, assess process risks, and evaluate PAT-enabled monitoring to facilitate robust production. Using carbamazepine (CBZ) and nicotinamide (NIC) as model compounds, an HME platform compatible with PAT tools was established. A systematic risk assessment identified five key risk domains: materials, machinery, measurement, methods, and other factors. A Box-Behnken design of experiments (DoE) evaluated the impact of screw speed, temperature, and mixing sections on CC quality. Near-infrared (NIR) spectroscopy monitored CBZ-NIC co-crystal formation in real time during HME process. DoE revealed temperature and number of mixing sections significantly influenced particle size (D: 2.0-4.0 μm), while screw speed affected efficiency. NIR spectroscopy detected a unique CC absorption peak at 5008.3 cm⁻¹, enabling real-time structural monitoring with high accuracy (R² = 0.9999). Risk assessment highlighted material attributes, process parameters, and equipment design as critical factors affecting CC formation. All experimental batches yielded ≥ 94% pure CCs with no residual starting materials, demonstrating process reproducibility and robustness. Overall, this work successfully established a continuous hot-melt extrusion (HME) process for manufacturing CBZ-NIC co-crystals, offering critical insights into material, equipment, and process parameters while implementing robust in-line NIR monitoring for real-time quality control. Additionally, this work provides interpretable insights and serves as a basis for future machine learning (ML)-driven studies.
热熔挤出(HME)为药物共晶(CCs)的制造提供了一种无溶剂、可扩展的方法,与行业向连续制造(CM)的转变相契合。然而,诸如产量优化不明确、风险管理不足以及过程分析技术(PAT)集成有限等挑战阻碍了其在工业中的应用。本研究旨在开发一个用于CCs的概念验证HME平台,评估过程风险,并评估启用PAT的监测以促进稳健生产。以卡马西平(CBZ)和烟酰胺(NIC)作为模型化合物,建立了一个与PAT工具兼容的HME平台。系统的风险评估确定了五个关键风险领域:材料、机械、测量、方法和其他因素。采用Box-Behnken实验设计(DoE)评估螺杆转速、温度和混合段对CC质量的影响。近红外(NIR)光谱在HME过程中实时监测CBZ-NIC共晶的形成。DoE表明温度和混合段数量对粒径(D:2.0 - 4.0μm)有显著影响,而螺杆转速影响效率。NIR光谱在5008.3 cm⁻¹处检测到一个独特的CC吸收峰,能够以高精度(R² = 0.9999)进行实时结构监测。风险评估强调材料属性、工艺参数和设备设计是影响CC形成的关键因素。所有实验批次均产生了≥94%纯度的CCs,且无残留起始原料,证明了工艺的可重复性和稳健性。总体而言,这项工作成功建立了一种用于制造CBZ-NIC共晶的连续热熔挤出(HME)工艺,在实施稳健的在线NIR监测以进行实时质量控制的同时,提供了对材料、设备和工艺参数的关键见解。此外,这项工作提供了可解释的见解,并为未来机器学习(ML)驱动的研究奠定了基础。