Suppr超能文献

基于数字信号处理(DSP)和机器学习(ML)的新生儿脑电图长期建模用于评估缺氧缺血性脑病损伤程度

Long-Term Neonatal EEG Modeling with DSP and ML for Grading Hypoxic-Ischemic Encephalopathy Injury.

作者信息

Twomey Leah, Gomez Sergi, Popovici Emanuel, Temko Andriy

机构信息

Electrical and Electronic Engineering Department, University College Cork, T12 K8AF Cork, Ireland.

出版信息

Sensors (Basel). 2025 May 10;25(10):3007. doi: 10.3390/s25103007.

Abstract

Hypoxic-Ischemic Encephalopathy (HIE) occurs in patients who experience a decreased flow of blood and oxygen to the brain, with the optimal window for effective treatment being within the first six hours of life. This puts a significant demand on medical professionals to accurately and effectively grade the severity of the HIE present, which is a time-consuming and challenging task. This paper proposes a novel workflow for background EEG grading, implementing a blend of Digital Signal Processing (DSP) and Machine-Learning (ML) techniques. First, the EEG signal is transformed into an amplitude and frequency modulated audio spectrogram, which enhances its relevant signal properties. The difference between EEG Grades 1 and 2 is enhanced. A convolutional neural network is then designed as a regressor to map the input image into an EEG grade, by utilizing an optimized rounding module to leverage the monotonic relationship among the grades. Using a nested cross-validation approach, an accuracy of 89.97% was achieved, in particular improving the AUC of the most challenging grades, Grade 1 and Grade 2, to 0.98 and 0.96. The results of this study show that the proposed representation and workflow increase the potential for background grading of EEG signals, increasing the accuracy of grading background patterns that are most relevant for therapeutic intervention, across large windows of time.

摘要

缺氧缺血性脑病(HIE)发生在脑部血液和氧气供应减少的患者中,有效治疗的最佳窗口期是在出生后的头六个小时内。这对医学专业人员提出了很高的要求,即要准确有效地对现有的HIE严重程度进行分级,这是一项耗时且具有挑战性的任务。本文提出了一种用于背景脑电图分级的新颖工作流程,融合了数字信号处理(DSP)和机器学习(ML)技术。首先,将脑电图信号转换为幅度和频率调制的音频频谱图,这增强了其相关信号特性。1级和2级脑电图之间的差异得到了增强。然后,设计一个卷积神经网络作为回归器,通过利用优化的舍入模块来利用等级之间的单调关系,将输入图像映射为脑电图等级。使用嵌套交叉验证方法,准确率达到了89.97%,特别是将最具挑战性的1级和2级的AUC提高到了0.98和0.96。本研究结果表明,所提出的表示方法和工作流程增加了脑电图信号背景分级的潜力,提高了在大时间窗口内对与治疗干预最相关的背景模式进行分级的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验