Irish Centre for Maternal and Child Health Research (INFANT), University College Cork, Cork, Ireland.
Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.
J Neural Eng. 2021 Mar 19;18(4):046007. doi: 10.1088/1741-2552/abe8ae.
To develop an automated system to classify the severity of hypoxic-ischaemic encephalopathy injury (HIE) in neonates from the background electroencephalogram (EEG).. By combining a quadratic time-frequency distribution (TFD) with a convolutional neural network, we develop a system that classifies 4 EEG grades of HIE. The network learns directly from the two-dimensional TFD through 3 independent layers with convolution in the time, frequency, and time-frequency directions. Computationally efficient algorithms make it feasible to transform each 5 min epoch to the time-frequency domain by controlling for oversampling to reduce both computation and computer memory. The system is developed on EEG recordings from 54 neonates. Then the system is validated on a large unseen dataset of 338 h of EEG recordings from 91 neonates obtained across multiple international centres.The proposed EEG HIE-grading system achieves a leave-one-subject-out testing accuracy of 88.9% and kappa of 0.84 on the development dataset. Accuracy for the large unseen test dataset is 69.5% (95% confidence interval, CI: 65.3%-73.6%) and kappa of 0.54, which is a significant (P<0.001) improvement over a state-of-the-art feature-based method with an accuracy of 56.8% (95% CI: 51.4%-61.7%) and kappa of 0.39. Performance of the proposed system was unaffected when the number of channels in testing was reduced from 8 to 2-accuracy for the large validation dataset remained at 69.5% (95% CI: 65.5%-74.0%).The proposed system outperforms the state-of-the-art machine learning algorithms for EEG grade classification on a large multi-centre unseen dataset, indicating the potential to assist clinical decision making for neonates with HIE.
为了开发一种从背景脑电图(EEG)中自动分类新生儿缺氧缺血性脑病损伤(HIE)严重程度的系统。通过将二次时频分布(TFD)与卷积神经网络相结合,我们开发了一种能够分类 HIE 4 种 EEG 等级的系统。该网络通过在时间、频率和时频方向上具有卷积的 3 个独立层,直接从二维 TFD 中学习。通过控制过采样来减少计算量和计算机内存,使将每个 5 分钟的时相转换为时频域的计算效率高的算法成为可能。该系统是基于 54 名新生儿的 EEG 记录开发的。然后,我们在来自 91 名新生儿的 338 小时 EEG 记录的大型未见过数据集上对系统进行验证,这些记录来自多个国际中心。所提出的 EEG HIE 分级系统在开发数据集上的留一受试者测试准确性为 88.9%,kappa 值为 0.84。对于大型未见过的测试数据集,准确性为 69.5%(95%置信区间,CI:65.3%-73.6%),kappa 值为 0.54,与准确性为 56.8%(95% CI:51.4%-61.7%)和 kappa 值为 0.39的最先进基于特征的方法相比,这是一个显著的提高(P<0.001)。当测试中的通道数量从 8 减少到 2-4 时,所提出的系统的性能不受影响,大型验证数据集的准确性仍为 69.5%(95% CI:65.5%-74.0%)。该系统在大型多中心未见过数据集上的 EEG 分级分类中优于最先进的机器学习算法,表明有潜力协助患有 HIE 的新生儿的临床决策。