Garg Divisha, Singh Harpreet, Shacham-Diamand Yosi
Department of Computer Science Engineering, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India.
School of Electrical Engineering, Tel-Aviv University, Tel Aviv 6997801, Israel.
Sensors (Basel). 2025 May 16;25(10):3149. doi: 10.3390/s25103149.
This study investigates plant stress assessment by integrating advanced sensor technologies and Artificial Intelligence (AI). Multi-sensor data-including electrical impedance spectroscopy, temperature, and humidity-were used to capture plant physiological responses under environmental stress conditions. The key task addressed was the prediction of stress-related parameters using machine learning. A novel boosting-based ensemble method, AdapTree, combining AdaBoost and decision trees, was proposed to improve predictive accuracy and model interpretability. Experimental evaluation across multiple regression metrics demonstrated that AdapTree outperformed baseline models, achieving an R score of 0.993 for impedance magnitude prediction and 0.999 for both relative humidity (RH) and temperature, along with low root mean squared error (134.565 for impedance, 0.006966 for RH, and 0.0050099 for temperature) and mean absolute error values (22.789 for impedance; 1.51 × 10-5 for RH and 2.51 × 10-5 for temperature). These findings validate the reliability and effectiveness of the proposed AI-driven framework in accurately interpreting sensor data for plant stress detection. The approach offers a scalable, data-driven solution to enhance precision agriculture and agricultural sustainability. Furthermore, this method can be extended to monitor additional stress markers or applied across diverse plant species and field conditions, supporting future developments in intelligent crop monitoring systems.
本研究通过整合先进的传感器技术和人工智能(AI)来探究植物胁迫评估。多传感器数据——包括电阻抗光谱、温度和湿度——被用于捕捉环境胁迫条件下植物的生理反应。所解决的关键任务是使用机器学习预测与胁迫相关的参数。提出了一种基于提升的新型集成方法AdapTree,它结合了AdaBoost和决策树,以提高预测准确性和模型可解释性。在多个回归指标上的实验评估表明,AdapTree优于基线模型,在阻抗幅度预测方面的R分数达到0.993,在相对湿度(RH)和温度预测方面均达到0.999,同时具有较低的均方根误差(阻抗为134.565,RH为0.006966,温度为0.0050099)和平均绝对误差值(阻抗为22.789;RH为1.51×10⁻⁵,温度为2.51×10⁻⁵)。这些发现验证了所提出的人工智能驱动框架在准确解释用于植物胁迫检测的传感器数据方面的可靠性和有效性。该方法提供了一种可扩展的、数据驱动的解决方案,以提高精准农业和农业可持续性。此外,这种方法可以扩展到监测其他胁迫标记,或应用于不同的植物物种和田间条件,支持智能作物监测系统的未来发展。