Bangaru Srikanth Sagar, Wang Chao, Aghazadeh Fereydoun, Muley Shashank, Willoughby Sueed
Inncircles Technologies Inc., Baton Rouge, LA 70810, USA.
Bert S. Turner Department of Construction Management, Louisiana State University, Baton Rouge, LA 70803, USA.
Sensors (Basel). 2025 May 20;25(10):3204. doi: 10.3390/s25103204.
The physical workload evaluation of construction activities will help to prevent excess physical fatigue or overexertion. The workload determination involves measuring physiological responses such as oxygen uptake (VO) while performing the work. The objective of this study is to develop a procedure for automatic oxygen uptake prediction using the worker's forearm muscle activity and motion data. The fused IMU and EMG data were analyzed to build a bidirectional long-short-term memory (BiLSTM) model to predict VO. The results show a strong correlation between the IMU and EMG features and oxygen uptake (R = 0.90, RMSE = 1.257 mL/kg/min). Moreover, measured (9.18 ± 1.97 mL/kg/min) and predicted (9.22 ± 0.09 mL/kg/min) average oxygen consumption to build one scaffold unit are significantly the same. This study concludes that the fusion of IMU and EMG features resulted in high model performance compared to IMU and EMG alone. The results can facilitate the continuous monitoring of the physiological status of construction workers and early detection of any potential occupational risks.
建筑活动的体力工作量评估有助于预防过度的身体疲劳或过度劳累。工作量的确定涉及在工作过程中测量诸如摄氧量(VO)等生理反应。本研究的目的是开发一种利用工人前臂肌肉活动和运动数据自动预测摄氧量的程序。对融合的惯性测量单元(IMU)和肌电图(EMG)数据进行分析,以建立一个双向长短期记忆(BiLSTM)模型来预测VO。结果表明,IMU和EMG特征与摄氧量之间存在很强的相关性(R = 0.90,均方根误差RMSE = 1.257毫升/千克/分钟)。此外,搭建一个脚手架单元时测得的平均耗氧量(9.18±1.97毫升/千克/分钟)和预测的平均耗氧量(9.22±0.09毫升/千克/分钟)显著相同。本研究得出结论,与单独使用IMU和EMG相比,IMU和EMG特征的融合产生了更高的模型性能。研究结果有助于持续监测建筑工人的生理状态,并早期发现任何潜在的职业风险。