Suppr超能文献

使用机器学习模型和可穿戴传感器数据估算模拟团队运动中的摄氧量:一项初步研究。

Estimating oxygen uptake in simulated team sports using machine learning models and wearable sensor data: A pilot study.

作者信息

Sheridan Dermot, Jaspers Arne, Viet Cuong Dinh, Op De Beéck Tim, Moyna Niall M, de Beukelaar Toon T, Roantree Mark

机构信息

School of Computing, Dublin City University, Dublin, Ireland.

Research Group for Musculoskeletal Rehabilitation, Department of Rehabilitation Science, KU Leuven, Leuven, Belgium.

出版信息

PLoS One. 2025 Apr 21;20(4):e0319760. doi: 10.1371/journal.pone.0319760. eCollection 2025.

Abstract

Accurate assessment of training status in team sports is crucial for optimising performance and reducing injury risk. This pilot study investigates the feasibility of using machine learning (ML) models to estimate oxygen uptake (VO2) with wearable sensors during team sports activities. Six healthy male team sports athletes participated in the study. Data were collected using inertial measurement units (IMU), heart rate monitors, and breathing rate sensors during incremental fitness tests. The performance of different ML models, including multiple linear regression (MLR), XGBoost, and deep learning models (LSTM, CNN, MLP), was compared using raw and engineered features from IMU data. Results indicate that while LSTM models with raw IMU data provided the most accurate predictions (RMSE: 4.976, MAE: 3.698 [Formula: see text]), MLR models remained competitive, especially with engineered features. Multi-sensor configurations, particularly those including sensors on the torso and limbs, enhanced prediction accuracy. The findings demonstrate the potential of ML models to monitor VO2 noninvasively in real-time, offering valuable insights into the internal physiological demand during team sports activities.

摘要

准确评估团队运动中的训练状态对于优化表现和降低受伤风险至关重要。这项初步研究调查了在团队体育活动期间使用机器学习(ML)模型通过可穿戴传感器估计摄氧量(VO2)的可行性。六名健康的男性团队运动运动员参与了该研究。在递增健身测试期间,使用惯性测量单元(IMU)、心率监测器和呼吸率传感器收集数据。使用来自IMU数据的原始特征和工程特征,比较了不同ML模型的性能,包括多元线性回归(MLR)、XGBoost和深度学习模型(LSTM、CNN、MLP)。结果表明,虽然使用原始IMU数据的LSTM模型提供了最准确的预测(均方根误差:4.976,平均绝对误差:3.698 [公式:见正文]),但MLR模型仍然具有竞争力,特别是在使用工程特征时。多传感器配置,特别是那些包括躯干和四肢上的传感器的配置,提高了预测准确性。研究结果表明ML模型具有在团队体育活动期间实时无创监测VO2的潜力,为内部生理需求提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18c0/12011253/5bb4d529e516/pone.0319760.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验