Suppr超能文献

对未来的洞察:评估医学生对人工智能的准备情况——克尔曼医科大学的一项横断面研究(2022年)

Insights Into the Future: Assessing Medical Students' Artificial Intelligence Readiness - A Cross-Sectional Study at Kerman University of Medical Sciences (2022).

作者信息

Rezazadeh Hossein, Mahani Ali Madadi, Salajegheh Mahla

机构信息

Student Committee of Medical Education Development, Education Development Center Kerman University of Medical Sciences Kerman Iran.

Department of Medical Education, Medical Education Development Center Kerman University of Medical Sciences Kerman Iran.

出版信息

Health Sci Rep. 2025 May 26;8(5):e70870. doi: 10.1002/hsr2.70870. eCollection 2025 May.

Abstract

BACKGROUND

Artificial intelligence (AI) has recently advanced in medicine globally, transforming healthcare delivery and medical education. While AI integration into medical curricula is gaining momentum worldwide, research on medical students' preparedness remains limited, particularly in developing countries. This paper aims to investigate the readiness of medical students at the Kerman University of Medical Sciences to employ AI in medicine in 2022.

METHODS

This cross-sectional research was carried out by distributing the validated 20-item Medical Artificial Intelligence Readiness Scale for Medical Students (MAIRS-MS) among 360 medical students, with a response rate of 94% ( = 340). The MAIRS-MS assessed four domains, including cognition (8 items), ability (7 items), vision (2 items), and ethics (3 items), using a 5-point Likert scale. Data analysis was conducted by descriptive statistics and independent sample -tests in SPSS v24.0, considering  < 0.05 significant.

RESULTS

Participants demonstrated below-average readiness scores across all domains: ability ( = 21.88 ± 6.74, 62.5% of the maximum possible score), cognition ( = 20.30 ± 7.04, 50.8%), ethics ( = 10.94 ± 3.04, 72.9%), and vision ( = 6.09 ± 1.94, 60.9%). The total mean readiness score was 59.21 ± 16.12 (59.2% of the maximum). The highest and lowest-rated items were "value of AI in education" (3.96 ± 1.18) and "explaining AI system training" (2.10 ± 1.01), respectively. No significant differences were found across demographic factors ( > 0.05).

CONCLUSION

Iranian medical students currently show limited readiness for AI integration in healthcare practice. Therefore, the study recommends: (1) implementing structured introductory AI courses in medical curricula, focusing particularly on technical fundamentals and practical applications, and (2) developing hands-on training programs that combine AI concepts with clinical scenarios. These findings provide valuable insights for curriculum development and educational policy in medical education.

摘要

背景

人工智能(AI)最近在全球医学领域取得了进展,正在改变医疗服务和医学教育。虽然将人工智能融入医学课程在全球范围内的势头越来越强劲,但关于医学生准备情况的研究仍然有限,特别是在发展中国家。本文旨在调查克尔曼医科大学的医学生在2022年将人工智能应用于医学的准备情况。

方法

这项横断面研究是通过向360名医学生发放经过验证的20项医学生医学人工智能准备量表(MAIRS-MS)来进行的,回复率为94%(n = 340)。MAIRS-MS使用5点李克特量表评估四个领域,包括认知(8项)、能力(7项)、愿景(2项)和伦理(3项)。在SPSS v24.0中通过描述性统计和独立样本t检验进行数据分析,认为p < 0.05具有显著性。

结果

参与者在所有领域的准备得分均低于平均水平:能力(x̅ = 21.88 ± 6.74,占最大可能得分的62.5%)、认知(x̅ = 20.30 ± 7.04,50.8%)、伦理(x̅ = 10.94 ± 3.04,72.9%)和愿景(x̅ = 6.09 ± 1.94,60.9%)。总平均准备得分为59.21 ± 16.12(占最大值的59.2%)。评分最高和最低的项目分别是“人工智能在教育中的价值”(3.96 ± 1.18)和“解释人工智能系统训练”(2.10 ± 1.01)。在人口统计学因素方面未发现显著差异(p > 0.05)。

结论

伊朗医学生目前在医疗保健实践中对人工智能整合的准备有限。因此,该研究建议:(1)在医学课程中实施结构化的人工智能入门课程,特别关注技术基础和实际应用;(2)开发将人工智能概念与临床场景相结合的实践培训项目。这些发现为医学教育中的课程开发和教育政策提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/518e/12106343/1818d21359d9/HSR2-8-e70870-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验