Rezazadeh Hossein, Mahani Ali Madadi, Salajegheh Mahla
Endocrinology and Metabolism Research Center Kerman University of Medical Sciences Kerman Iran.
Student Committee of Medical Education Development, Education Development Center Kerman University of Medical Sciences Kerman Iran.
Health Sci Rep. 2025 Aug 18;8(8):e71169. doi: 10.1002/hsr2.71169. eCollection 2025 Aug.
The integration of artificial intelligence into healthcare is rapidly expanding, yet formal AI education for health profession students remains limited. Generation Z students, as digital natives, require innovative instructional methods tailored to their learning preferences. This study aimed to investigate the effectiveness of an innovative course based on hacking education for Z-generation health profession students about artificial intelligence.
This was a single-group pre- and post-test interventional study conducted with 81 health profession students. Educational needs were identified through an expert panel. A 100-h flipped classroom course incorporating group discussions, communities of practice, peer teaching, and gamification was delivered. Pre- and post-course questionnaires assessed students' familiarity with key AI concepts.
Post-course assessments showed a significant improvement in students' familiarity with AI-related domains, including programming languages ( < 0.001), machine learning ( < 0.001), AI applications in healthcare ( < 0.001), data science ( < 0.001), image processing ( < 0.001), deep learning ( < 0.001), neural networks ( < 0.001), and statistics ( < 0.001).
The hacking education-based AI course effectively enhanced students' AI competencies. Given the increasing role of AI in healthcare, integrating structured AI training into medical curricula is essential to prepare future healthcare professionals for AI-driven clinical environments.
人工智能在医疗保健领域的整合正在迅速扩展,但针对健康专业学生的正规人工智能教育仍然有限。Z世代学生作为数字原生代,需要根据他们的学习偏好量身定制的创新教学方法。本研究旨在调查一门基于黑客教育的创新课程对Z世代健康专业学生人工智能学习的有效性。
这是一项对81名健康专业学生进行的单组前后测干预研究。通过专家小组确定教育需求。提供了一门为期100小时的翻转课堂课程,其中包括小组讨论、实践社区、同伴教学和游戏化。课程前后的问卷调查评估了学生对关键人工智能概念的熟悉程度。
课程后的评估显示,学生对人工智能相关领域的熟悉程度有显著提高,包括编程语言(<0.001)、机器学习(<0.001)、人工智能在医疗保健中的应用(<0.001)、数据科学(<0.001)、图像处理(<0.001)、深度学习(<0.001)、神经网络(<0.001)和统计学(<0.001)。
基于黑客教育的人工智能课程有效地提高了学生的人工智能能力。鉴于人工智能在医疗保健中的作用日益增强,将结构化的人工智能培训纳入医学课程对于让未来的医疗保健专业人员为人工智能驱动的临床环境做好准备至关重要。