Li Man, Li Suixuan, Zhang Zhihan, Su Chuanjin, Wong Bryce, Hu Yongjie
School of Engineering and Applied Science, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States.
Acc Mater Res. 2025 Apr 8;6(5):563-576. doi: 10.1021/accountsmr.4c00349. eCollection 2025 May 23.
Power semiconductors and chips are essential in modern electronics, driving applications from personal devices and data centers to energy technologies, vehicles, and Internet infrastructure. However, efficient heat dissipation remains a critical challenge, directly affecting their performance, reliability, and lifespan. High-power electronics based on wide- and ultrawide-bandgap semiconductors can exhibit power densities exceeding 10 kW/cm, hundreds of times higher than digital electronics, posing significant thermal management challenges. Addressing this issue requires advanced materials and interface engineering, alongside a comprehensive understanding of materials physics, chemistry, transport dynamics, and various electronic, thermal, and mechanical properties. Despite progress in thermal management solutions, the complex interplay of phonons, electrons, and their interactions with material lattices, defects, boundaries, and interfaces presents persistent challenges. This Account highlights key advancements in thermal management for power semiconductors and chips, with a focus on our group's recent contributions. Our approach addresses several critical issues: (1) developing materials with ultrahigh thermal conductivity for enhanced heat dissipation, (2) reducing thermal boundary resistance between power semiconductors and emerging 2D materials, (3) improving thermal and mechanical contacts between chips and heat sinks, (4) innovating dynamic thermal management solutions, and (5) exploring novel principles of thermal transport and design for future technologies. Our research philosophy integrates multiscale theoretical predictions with experimental validation to achieve a paradigm shift in thermal management. By leveraging first-principles calculations, the recent studies redefined traditional criteria for high-thermal-conductivity materials. Guided by these insights, we developed boron arsenide and boron phosphide, which exhibit record-high thermal conductivities of up to 1300 W/mK. Through phonon band structure engineering, we reduced TBR in GaN/BAs interfaces by over 8-fold compared to GaN/diamond interfaces. The combination of low TBR and high thermal conductivity significantly reduced hotspot temperatures, setting new benchmarks in thermal design for power electronics. We further explored the anisotropic TBR properties of two-dimensional materials and Moiré patterns in twisted graphene, expanding the thermal design landscape. To address challenges at device-heat sink interfaces, we developed self-assembled boron arsenide composites with a thermal conductivity of 21 W/mK and exceptional mechanical compliance (∼100 kPa). These composites provide promising solutions for thermal management in flexible electronics and soft robotics. In dynamic thermal management, we pioneered the concept of solid-state thermal transistors, enabling electrically controlled heat flow with unparalleled tunability, speed, reliability, and compatibility with integrated circuit fabrication. These innovations not only enhance thermal performance but also enable the exploration of novel transport physics, improving our fundamental understanding of thermal energy transport under extreme conditions. Looking forward, we reflect on remaining challenges and identify opportunities for further advancements. These include scaling up the production of high-performance materials, integrating thermal solutions with existing manufacturing processes, and uncovering new physics to inspire next-generation power electronics technologies. By addressing these challenges, we aim to inspire future codesign strategies that enable the development of more efficient, reliable, sustainable, and high-performance electronic systems.
功率半导体和芯片在现代电子学中至关重要,推动着从个人设备、数据中心到能源技术、车辆及互联网基础设施等诸多应用。然而,高效散热仍是一项关键挑战,直接影响着它们的性能、可靠性和使用寿命。基于宽禁带和超宽禁带半导体的高功率电子器件可展现出超过10 kW/cm的功率密度,比数字电子器件高出数百倍,这带来了重大的热管理挑战。解决这一问题需要先进的材料和界面工程,以及对材料物理、化学、传输动力学以及各种电子、热和机械性能的全面理解。尽管热管理解决方案取得了进展,但声子、电子及其与材料晶格、缺陷、边界和界面的相互作用之间复杂的相互作用仍带来持续挑战。本综述重点介绍了功率半导体和芯片热管理的关键进展,重点关注我们团队最近的贡献。我们的方法解决了几个关键问题:(1)开发具有超高热导率的材料以增强散热;(2)降低功率半导体与新兴二维材料之间的热边界电阻;(3)改善芯片与散热器之间的热接触和机械接触;(4)创新动态热管理解决方案;(5)探索未来技术的热传输新原理和设计。我们的研究理念将多尺度理论预测与实验验证相结合,以实现热管理的范式转变。通过利用第一性原理计算,最近的研究重新定义了高导热率材料的传统标准。在这些见解的指导下,我们开发了砷化硼和磷化硼,它们展现出高达1300 W/mK的创纪录高热导率。通过声子能带结构工程,我们将GaN/BAs界面的热边界电阻与GaN/金刚石界面相比降低了8倍以上。低热边界电阻和高导热率的结合显著降低了热点温度,为功率电子学的热设计设定了新基准。我们进一步探索了二维材料的各向异性热边界电阻特性以及扭曲石墨烯中的莫尔图案,拓展了热设计领域。为解决器件与散热器界面的挑战,我们开发了热导率为21 W/mK且具有出色机械柔顺性(约100 kPa)的自组装砷化硼复合材料。这些复合材料为柔性电子学和软机器人中的热管理提供了有前景的解决方案。在动态热管理方面,我们开创了固态热晶体管的概念,实现了具有无与伦比的可调性、速度、可靠性以及与集成电路制造兼容性的电控热流。这些创新不仅提高了热性能,还使探索新的传输物理成为可能,增进了我们对极端条件下热能传输的基本理解。展望未来,我们思考了 remaining challenges 并确定了进一步发展的机会。这些包括扩大高性能材料的生产规模、将热解决方案与现有制造工艺集成,以及揭示新物理以启发下一代功率电子技术。通过应对这些挑战,我们旨在激发未来的协同设计策略,以实现更高效、可靠、可持续和高性能电子系统的发展。 (注:原文中“remaining challenges”未翻译完整,推测可能是排版或录入问题,若有完整准确原文,可进一步完善译文)