Suppr超能文献

心血管医疗专业人员的大语言模型(LLMs)和ChatGPT入门指南。

A Primer on Large Language Models (LLMs) and ChatGPT for Cardiovascular Healthcare Professionals.

作者信息

Ahmed Muneeb, Lam Jeffrey, Chow Alexander, Chow Chi-Ming

机构信息

Department of Medicine, University of Toronto, Toronto, Ontario, Canada.

Division of Cardiology, Department of Medicine, Queen's University, Kingston, Ontario, Canada.

出版信息

CJC Open. 2025 Feb 20;7(5):660-666. doi: 10.1016/j.cjco.2025.02.012. eCollection 2025 May.

Abstract

Generative artificial intelligence (AI), particularly large language models (LLMs), such as ChatGPT, is transforming healthcare by offering novel ways to synthesize and communicate medical knowledge. This development is especially relevant in cardiology, as patient education, clinical decision-making, and administrative workflows play pivotal roles in this area. ChatGPT, originally built on GPT-3 and refined into GPT-4, can simplify complex cardiology literature, translate technical explanations into plain language, and address questions across different linguistic backgrounds. Studies show that although ChatGPT demonstrates considerable promise in performing text-based tasks-ranging from passing portions of the European Exam in Core Cardiology to creating patient-friendly educational materials-its inability to interpret images remains a major limitation. Meanwhile, concerns around false information, data bias, and ethical issues highlight the need for careful oversight. Future directions include integrating LLMs with computer-vision modules for image-based diagnostics and combining unstructured patient data to improve risk prediction and phenotyping. Social-media research suggests that chatbots sometimes provide more-empathetic responses than do physicians, underscoring both their potential advantages and complexities. LLM-based tools can also generate letters for insurance prior authorizations or appeals, helping reduce administrative burden. New multimodal approaches, such as ChatGPT Vision, have the potential to enable direct image processing, although clinical validation of this function is yet to be established. The judicious integration of ChatGPT and other LLMs into cardiology requires ongoing validation, robust regulatory frameworks, and strong ethical guidelines to ensure patient privacy, avoid misinformation, and promote equitable healthcare delivery. This review aims to provide a primer on LLMs for cardiovascular professionals, summarizing key applications, current limitations, and prospects in this rapidly evolving field of digital health.

摘要

生成式人工智能(AI),尤其是大型语言模型(LLM),如ChatGPT,正在通过提供合成和交流医学知识的新方法来改变医疗保健。这一发展在心脏病学领域尤为重要,因为患者教育、临床决策和管理工作流程在该领域起着关键作用。ChatGPT最初基于GPT-3构建,并经过改进成为GPT-4,它可以简化复杂的心脏病学文献,将技术解释转化为通俗易懂的语言,并回答来自不同语言背景的问题。研究表明,尽管ChatGPT在执行基于文本的任务方面展现出了巨大的潜力——从通过欧洲核心心脏病学考试的部分内容到创建患者友好型教育材料——但其无法解读图像仍然是一个主要限制。与此同时,对虚假信息、数据偏差和伦理问题的担忧凸显了进行仔细监督的必要性。未来的方向包括将大型语言模型与计算机视觉模块集成以进行基于图像的诊断,以及整合非结构化患者数据以改善风险预测和表型分析。社交媒体研究表明,聊天机器人有时比医生能提供更具同理心的回应,这凸显了它们的潜在优势和复杂性。基于大型语言模型的工具还可以生成保险预先授权或上诉的信函,有助于减轻管理负担。新的多模态方法,如ChatGPT Vision,有可能实现直接图像处理,尽管该功能的临床验证尚未确立。将ChatGPT和其他大型语言模型明智地整合到心脏病学中需要持续的验证、强大的监管框架和严格的伦理准则,以确保患者隐私、避免错误信息并促进公平的医疗服务提供。本综述旨在为心血管专业人员提供关于大型语言模型的入门介绍,总结这一快速发展的数字健康领域中的关键应用、当前局限性和前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58d1/12105510/5a37fb1883ca/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验