Suppr超能文献

使用可解释的机器学习算法为急性胰腺炎患者的感染性休克风险建立预测模型。

Developing a predictive model for septic shock risk in acute pancreatitis patients using interpretable machine learning algorithms.

作者信息

Song Binglin, Liu Ping, Fu Kangrui, Liu Chun

机构信息

Clinical Medical College, North Sichuan Medical College, Nanchong, China.

Emergency Department, Dazhou Central Hospital, Dazhou, China.

出版信息

Digit Health. 2025 May 25;11:20552076251346361. doi: 10.1177/20552076251346361. eCollection 2025 Jan-Dec.

Abstract

BACKGROUND

Septic shock is a severe complication of acute pancreatitis (AP), often associated with poor prognosis. This study aims to analyze the clinical characteristics of patients with acute pancreatitis and develop an interpretable early prediction model for septic shock in these patients using machine learning (ML). The model is intended to assist emergency physicians in resource allocation and medical decision making.

METHODS

Data were collected from the MIMIC-IV 3.0 database. The dataset was divided into a training set and a test set in a 7:3 ratio. Feature selection was performed using LASSO (Least Absolute Shrinkage and Selection Operator) regression. Subsequently, 10 ML models were developed: Random Forest, Logistic Regression, Gradient Boosting Machine, Neural Network, Extreme Gradient Boosting (XGBoost), K-Nearest Neighbor, Adaptive Boosting, Light Gradient Boosting Machine, Category Boosting, and Support Vector Machine. To enhance and optimize model interpretability, Shapley Additive Explanations (SHAP) were employed.

RESULTS

A total of 1032 patients with AP were included in this study, from which 31 variables were selected for model development. By comparing the area under the receiver operating characteristic curve and decision curve analysis results between the training and test sets, the XGBoost model demonstrated a significant advantage over other models. SHAP analysis revealed that white blood cell count, total bilirubin (bilirubin total), and bicarbonate (HCO ) levels were the three most critical risk factors for the development of septic shock in patients with AP.

CONCLUSION

ML approaches exhibited promising performance in predicting septic shock in patients with AP. These models may aid in guiding treatment decisions for patients with AP in the emergency department.

摘要

背景

感染性休克是急性胰腺炎(AP)的一种严重并发症,常与预后不良相关。本研究旨在分析急性胰腺炎患者的临床特征,并使用机器学习(ML)为这些患者建立一个可解释的感染性休克早期预测模型。该模型旨在协助急诊医生进行资源分配和医疗决策。

方法

数据来自MIMIC-IV 3.0数据库。数据集按7:3的比例分为训练集和测试集。使用LASSO(最小绝对收缩和选择算子)回归进行特征选择。随后,开发了10个ML模型:随机森林、逻辑回归、梯度提升机、神经网络、极端梯度提升(XGBoost)、K近邻、自适应提升、轻梯度提升机、类别提升和支持向量机。为了增强和优化模型的可解释性,采用了夏普利加性解释(SHAP)。

结果

本研究共纳入1032例AP患者,从中选择31个变量用于模型开发。通过比较训练集和测试集之间的受试者工作特征曲线下面积和决策曲线分析结果,XGBoost模型显示出比其他模型更显著的优势。SHAP分析显示,白细胞计数、总胆红素(总胆红素)和碳酸氢盐(HCO)水平是AP患者发生感染性休克的三个最关键危险因素。

结论

ML方法在预测AP患者感染性休克方面表现出有前景的性能。这些模型可能有助于指导急诊科AP患者的治疗决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe94/12107010/5ca2b9343b45/10.1177_20552076251346361-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验