Sun Yifei, Zhao Xiwen, Chan Kwun Chuen Gary, Xu Wanwan, Allore Heather, Zhao Yize
Department of Biostatistics, Columbia University, New York, NY 10032, United States.
Department of Biostatistics, Yale University, New Haven, CT 06520, United States.
Biometrics. 2025 Apr 2;81(2). doi: 10.1093/biomtc/ujaf064.
Understanding how biomarkers change in relation to disease pathogenesis is a key area in biomedical research. We propose a semiparametric joint model to analyze the temporal evolution of biomarkers prior to the onset of disease. The model allows for a flexible biomarker trajectory that depends on two time scales: a natural time scale such as age and time to disease onset. In practice, the natural time scale often differs from time-on-study, leading to analytical challenges such as left-truncation bias. We introduce a profile kernel estimating equation approach to estimate regression coefficients and unspecified baseline mean trajectory functions. We establish the large-sample properties of the proposed estimators and conduct simulation studies to evaluate their finite-sample performance. Our method is applied to investigate brain biomarker trajectories before the onset of preclinical Alzheimer's disease. We observed a decline in cortical thickness prior to disease onset across brain regions, with APOE4 carriers showing lower levels compared to non-carriers.
了解生物标志物如何随疾病发病机制而变化是生物医学研究的一个关键领域。我们提出了一种半参数联合模型,用于分析疾病发作前生物标志物的时间演变。该模型允许有一个灵活的生物标志物轨迹,它依赖于两个时间尺度:一个自然时间尺度,如年龄和疾病发作时间。在实际中,自然时间尺度往往与研究时间不同,从而导致诸如左截断偏差等分析挑战。我们引入了一种轮廓核估计方程方法来估计回归系数和未指定的基线平均轨迹函数。我们建立了所提出估计量的大样本性质,并进行模拟研究以评估它们的有限样本性能。我们的方法被应用于研究临床前阿尔茨海默病发作前的脑生物标志物轨迹。我们观察到在疾病发作前,大脑各区域的皮质厚度都有所下降,与非携带者相比,APOE4携带者的皮质厚度水平更低。