Son Yeseul, Kim Sang Bok, Mohapatra Debananda, Cheon Taehoon, Kim Soo-Hyun
Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulju-gun, Ulsan, 44919, Republic of Korea.
Center for Core Research Facilities, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Dalseong-gun, Daegu, 42988, Republic of Korea.
Adv Sci (Weinh). 2025 Aug;12(29):e03561. doi: 10.1002/advs.202503561. Epub 2025 May 28.
Atomic layer modulation (ALM) presents a novel approach for controlling the stoichiometry of platinum-ruthenium (PtRu) alloys rather than a tedious atomic layer deposition (ALD) supercycling multielement ALD process. This method sequentially pulses dimethyl-(N,N-dimethyl-3-butene-1-amine-N)platinum (CHNPt, DDAP) and tricarbonyl(trimethylenemethane)ruthenium [Ru(TMM)(CO)] precursors with O as a counter reactant at 225 °C to produce ALM-PtRu bimetallic alloys at the nanoscale. By smartly adjusting precursor pulsing times and temperatures, the average surface composition during growth can be modulated, achieving precise control over the PtRu alloy stoichiometry. Aberration-corrected ultra-high-resolution scanning transmission electron microscope, Rutherford backscattered spectrometry, and advanced X-ray diffraction analytical tools demonstrate homogenized Pt and Ru elemental distribution without localized segregation with adjustable Pt:Ru ratios ranging from 28:72 to 97:3. Demonstrating ≈100% step coverage on the high aspect ratio (≈30) 3D trench structures (top width of 125 nm, bottom width of 85 nm), the alloy maintains uniform thickness (≈30 nm) throughout its layers. ALM-PtRu demonstrates durable and superior electrocatalytic performance compared to benchmark precious metal catalysts like ALD-Pt and ALD-Ru. This study highlights ALM's potential for precise alloy stoichiometry in PtRu films, offering significant promise for various applications, particularly electrocatalysis, and extending ALM to other metallic alloy systems.
原子层调制(ALM)提出了一种控制铂钌(PtRu)合金化学计量比的新方法,而不是采用繁琐的原子层沉积(ALD)超循环多元素ALD工艺。该方法在225°C下,将二甲基 -(N,N - 二甲基 - 3 - 丁烯 - 1 - 胺 - N)铂(CHNPt,DDAP)和三羰基(三亚甲基甲烷)钌[Ru(TMM)(CO)]前驱体与O作为反反应物依次脉冲,以在纳米尺度上制备ALM - PtRu双金属合金。通过巧妙地调整前驱体脉冲时间和温度,可以调制生长过程中的平均表面组成,从而实现对PtRu合金化学计量比的精确控制。像差校正超高分辨率扫描透射电子显微镜、卢瑟福背散射光谱和先进的X射线衍射分析工具表明,Pt和Ru元素分布均匀,没有局部偏析,Pt:Ru比例可在28:72至97:3之间调节。该合金在高纵横比(≈30)的3D沟槽结构(顶部宽度125nm,底部宽度85nm)上显示出≈100%的台阶覆盖率,并且在整个层中保持均匀的厚度(≈30nm)。与诸如ALD - Pt和ALD - Ru等基准贵金属催化剂相比,ALM - PtRu表现出持久且优异的电催化性能。这项研究突出了ALM在PtRu薄膜中精确合金化学计量比方面的潜力,为各种应用,特别是电催化,带来了巨大希望,并将ALM扩展到其他金属合金系统。