Division of Materials Science and Engineering , Hanyang University , 222, Wangsimni-ro , Seongdong-gu, Seoul 04763 , Republic of Korea.
Department of Physics and VdW Materials Research Center , Yonsei University , Seoul 03722 , Republic of Korea.
ACS Appl Mater Interfaces. 2019 Apr 3;11(13):12683-12692. doi: 10.1021/acsami.9b02999. Epub 2019 Mar 20.
Amorphous InGaZnO semiconductors have been rapidly developed as active charge-transport materials in thin film transistors (TFTs) because of their cost effectiveness, flexibility, and homogeneous characteristics for large-area applications. Recently, InZnSnO (IZTO) with superior mobility (higher than 20 cm V s) has been suggested as a promising oxide semiconductor material for high-resolution, large-area displays. However, the electrical and physical characteristics of IZTO have not been fully characterized. In this study, thin IZTO films were grown using a novel atomic layer deposition (ALD) supercycle process consisting of alternating subcycles of single-oxide deposition. By varying the number of deposition subcycles, it was determined that the insertion of a Sn-O cycle improved the mobility and reliability of IZTO-based TFTs. Specifically, the IZTO TFT obtained using one In-O cycle, one Zn-O cycle, and one Sn-O exhibited the best performance (saturation mobility of 27.8 cm V s and threshold voltage shift of 1.8 V after applying positive-bias temperature stress conditions). Next, the production of rollable and flexible devices was demonstrated by fabricating ALD-processed IZTO TFTs on polymer substrates. The electrical characteristics of these TFTs were retained without drastic degradation for 240,000 bending cycles. These results indicate that the supercycle ALD technique is effective for synthesizing multicomponent oxide TFTs for electronic applications requiring high mobility and mechanical flexibility.
非晶态 InGaZnO 半导体由于其成本效益、灵活性以及在大面积应用中的均匀特性,已迅速发展成为薄膜晶体管 (TFT) 中的活性电荷输运材料。最近,具有较高迁移率(高于 20 cm V s)的 InZnSnO(IZTO)被认为是一种很有前途的氧化物半导体材料,可用于高分辨率、大面积显示器。然而,IZTO 的电学和物理特性尚未得到充分表征。在这项研究中,使用一种由交替的单氧化物沉积子循环组成的新型原子层沉积 (ALD) 超循环工艺来生长薄 IZTO 薄膜。通过改变沉积子循环的数量,可以确定插入 Sn-O 循环可以提高 IZTO 基 TFT 的迁移率和可靠性。具体来说,使用一个 In-O 循环、一个 Zn-O 循环和一个 Sn-O 循环获得的 IZTO TFT 表现出最佳性能(饱和迁移率为 27.8 cm V s,施加正偏压温度应力条件后阈值电压漂移为 1.8 V)。接下来,通过在聚合物衬底上制造 ALD 处理的 IZTO TFT,展示了可滚动和灵活设备的生产。这些 TFT 的电特性在 240,000 次弯曲循环中没有明显退化,保持不变。这些结果表明,超循环 ALD 技术对于合成用于需要高迁移率和机械灵活性的电子应用的多组分氧化物 TFT 是有效的。