Suppr超能文献

基于视觉变换器的新型人工智能前房炎症量化方法

Novel Artificial Intelligence-Based Quantification of Anterior Chamber Inflammation Using Vision Transformers.

作者信息

Cifuentes-González Carlos, Gutiérrez-Sinisterra Laura, Rojas-Carabali William, Boon Joewee, Hudlikar Atharva, Wei Xin, Shchurov Leonid, Oo Hnin Hnin, Loh Nicholas Chieh, Shannon Choo Sheriel, Rodríguez-Camelo Laura Daniela, Lee Bernett, de-la-Torre Alejandra, Agrawal Rupesh

机构信息

Department of Ophthalmology, National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore.

Programme for Ocular Inflammation & Infection Translational Research (PROTON), Department of Ophthalmology, National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore.

出版信息

Transl Vis Sci Technol. 2025 May 1;14(5):31. doi: 10.1167/tvst.14.5.31.

Abstract

PURPOSE

Quantitative assessment of inflammation is critical for the accurate diagnosis and effective management of uveitis. This study aims to introduce a novel three-dimensional vision transformer approach using anterior segment optical coherence tomography (AS-OCT) to quantify anterior chamber (AC) inflammation in uveitis patients.

METHODS

This cross-sectional study was conducted from January 2022 to December 2023 at a single tertiary eye center in Singapore, analyzing 830 AS-OCT B-scans from 180 participants, including uveitis patients at various stages of inflammation and healthy controls. The primary outcomes measured were central corneal thickness (CCT), Iris Vascularity Index (IVI), and Anterior Chamber Particle Index (ACPI). These parameters were assessed using the Swin Transformer V2 artificial intelligence algorithm on AS-OCT images.

RESULTS

The study included 180 participants, including uveitis patients and healthy controls. We observed significant differences between these groups in CCT (P = 0.01), ACPI (P < 0.001), and IVI (P < 0.001). Affected eyes showed elevated CCT and ACPI, along with a significant decrease in IVI, especially in severe inflammation cases. Linear regression analysis underscored a robust correlation between these biometric parameters and inflammation severity in the AC (R = 0.481, P < 0.001). A 6-month longitudinal study further validated the stability and repeatability of these measurements, affirming their reliability over time.

CONCLUSIONS

This study introduces a novel, objective method to quantify ocular inflammation using ACPI, IVI, and CCT, which enhances the precision of assessments over traditional subjective methods prone to interobserver variability. Demonstrated through significant biomarker stability over a 6-month period, our findings support the use of these metrics for reliable long-term monitoring of inflammation progression and treatment efficacy in clinical practice.

TRANSLATIONAL RELEVANCE

Our artificial intelligence algorithm objectively quantifies AC inflammation reliably over the time and could be used in the clinic as well as in clinical trials as an objective biomarker.

摘要

目的

炎症的定量评估对于葡萄膜炎的准确诊断和有效管理至关重要。本研究旨在引入一种使用眼前节光学相干断层扫描(AS-OCT)的新型三维视觉Transformer方法,以量化葡萄膜炎患者前房(AC)炎症。

方法

本横断面研究于2022年1月至2023年12月在新加坡一家三级眼科中心进行,分析了180名参与者的830次AS-OCT B扫描,包括处于不同炎症阶段的葡萄膜炎患者和健康对照。测量的主要结果是中央角膜厚度(CCT)、虹膜血管指数(IVI)和前房颗粒指数(ACPI)。这些参数在AS-OCT图像上使用Swin Transformer V2人工智能算法进行评估。

结果

该研究包括180名参与者,包括葡萄膜炎患者和健康对照。我们观察到这些组在CCT(P = 0.01)、ACPI(P < 0.001)和IVI(P < 0.001)方面存在显著差异。患眼显示CCT和ACPI升高,同时IVI显著降低,尤其是在严重炎症病例中。线性回归分析强调了这些生物特征参数与AC炎症严重程度之间的强相关性(R = 0.481,P < 0.001)。一项为期6个月的纵向研究进一步验证了这些测量的稳定性和可重复性,证实了它们随时间的可靠性。

结论

本研究引入了一种使用ACPI、IVI和CCT量化眼部炎症的新型客观方法,与传统的易受观察者间差异影响的主观方法相比,提高了评估的精度。通过6个月期间显著的生物标志物稳定性得到证明,我们的研究结果支持在临床实践中使用这些指标对炎症进展和治疗效果进行可靠的长期监测。

转化相关性

我们的人工智能算法能够随时间客观可靠地量化AC炎症,可作为客观生物标志物用于临床及临床试验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a29/12126123/8ca405f533df/tvst-14-5-31-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验