Suppr超能文献

使用扫频源眼前节光学相干断层扫描技术对前房细胞进行自动定量分析。

Automated quantification of anterior chamber cells using swept-source anterior segment optical coherence tomography.

作者信息

Pillar Shani, Kadomoto Shin, Chen Keren, Gonzalez Saitiel Sandoval, Cherian Nina, Privratsky Joseph K, Zargari Nicolette, Jackson Nicholas J, Corradetti Giulia, Chen Judy L, Sadda SriniVas R, Holland Gary N, Tsui Edmund

机构信息

Ocular Inflammatory Disease Center, UCLA Jules Stein Eye Institute, Los Angeles, USA.

Department of Ophthalmology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA.

出版信息

J Ophthalmic Inflamm Infect. 2025 Jan 9;15(1):3. doi: 10.1186/s12348-025-00456-y.

Abstract

PURPOSE

To validate automated counts of presumed anterior chamber (AC) cells in eyes with histories of uveitis involving the anterior segment using swept-source (SS) anterior segment optical coherence tomography (AS-OCT) against manual counts and compare automated counts against Standardized Uveitis Nomenclature (SUN) criteria.

METHODS

Eyes were imaged with the ANTERION SS AS-OCT device (Heidelberg Engineering). A fully automated custom algorithm quantified the number of hyper-reflective foci (HRF) in line-scan images. Automated and manual counts were compared using interclass correlation (ICC) and Pearson correlation coefficient. Automated counts were compared to SUN grades using a mixed-effects linear regression model.

RESULTS

90 eyes (54 participants) were included; 67 eyes (41 participants) had histories of uveitis, while 23 eyes (13 healthy participants) served as controls. ICC comparing automated to manual counts was 0.99 and the Pearson correlation coefficient was 0.98. Eyes at each SUN grade with corresponding median HRF (interquartile range [IQR]) were: Grade 0, 42 eyes, 2 HRF (0,4); 0.5+, 10 eyes, 10 HRF (8,15); 1+, 9 eyes, 22 HRF (15,33); 2+, 3 eyes, 27 HRF; 3+, 2 eyes, 128 HRF; 4+, 1 eye, 474 HRF. For every 1-step increase in grade, automated count increased by 38 (p < 0.001) or 293% (Pearson correlation coefficient 0.80, p < 0.001). Automated counts differed significantly between clinically inactive eyes (2 HRF [0,4]) and controls (0 HRF [0,1], p = 0.02).

CONCLUSIONS

Our algorithm accurately counts HRF when compared to manual counts, with strong correlation to SUN clinical grades. SS AS-OCT offers the advantage of imaging of the entire AC and may allow detection of subclinical inflammation in eyes that appear clinically inactive.

摘要

目的

使用扫频源(SS)眼前节光学相干断层扫描(AS-OCT),针对手动计数,验证有前段葡萄膜炎病史的眼睛中假定前房(AC)细胞的自动计数,并将自动计数与标准化葡萄膜炎命名法(SUN)标准进行比较。

方法

使用ANTERION SS AS-OCT设备(海德堡工程公司)对眼睛进行成像。一种完全自动化的定制算法对线扫描图像中的高反射灶(HRF)数量进行量化。使用组内相关系数(ICC)和Pearson相关系数比较自动计数和手动计数。使用混合效应线性回归模型将自动计数与SUN分级进行比较。

结果

纳入90只眼(54名参与者);67只眼(41名参与者)有葡萄膜炎病史,而23只眼(13名健康参与者)作为对照。自动计数与手动计数比较的ICC为0.99,Pearson相关系数为0.98。每个SUN分级对应的眼睛及HRF中位数(四分位间距[IQR])分别为:0级,42只眼,2个HRF(0,4);0.5+级,10只眼,10个HRF(8,15);1+级,9只眼,22个HRF(15,33);2+级,3只眼,27个HRF;3+级,2只眼,128个HRF;4+级,1只眼,474个HRF。分级每增加1级,自动计数增加38(p < 0.001)或293%(Pearson相关系数0.80,p < 0.001)。临床非活动眼(2个HRF [0,4])与对照(0个HRF [0,1])的自动计数有显著差异(p = 0.02)。

结论

与手动计数相比,我们的算法能准确计数HRF,与SUN临床分级有很强的相关性。SS AS-OCT具有对整个前房成像的优势,可能有助于检测临床看似非活动眼的亚临床炎症。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1404/11717729/1a7b8193fde5/12348_2025_456_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验