Suppr超能文献

评估糖尿病性黄斑水肿中的抗VEGF反应:一项具有人工智能辅助治疗见解的系统评价

Evaluating anti-VEGF responses in diabetic macular edema: A systematic review with AI-powered treatment insights.

作者信息

Tamilselvi S, Suchetha M, Ratra Dhanashree, Surya Janani, Preethi S, Raman Rajiv

机构信息

Centre for Healthcare Advancements, Innovation and Research, Vellore Institute of Technology, Chennai, Tamil Nadu, India.

Department of Vitreoretinal Diseases, Sankara Nethralaya Medical Research Foundation, Chennai, Tamil Nadu, India.

出版信息

Indian J Ophthalmol. 2025 Jun 1;73(6):797-806. doi: 10.4103/IJO.IJO_1810_24. Epub 2025 May 28.

Abstract

Recent advances in deep learning and machine learning have greatly increased the capabilities of extracting features for evaluating the response to anti VEGF treatment in patients with Diabetic Macular Edema (DME). In this review, we explore how these algorithms can be used for discriminating between responders and non-responders to anti vascular endothelial growth factor (VEGF) injections. Electronic databases, including PubMed, IEEE Xplore, BioMed, JAMA, and Google Scholar, were searched, and reference lists from relevant publications were also considered from inception till August 31, 2023, based on the inclusion and exclusion criteria. Data extraction was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The results focus on keywords such as DME, OCT, anti VEGF, and patient responses after anti VEGF injections. The article measures the effectiveness of different machine learning and deep learning algorithms, including linear discriminant analysis (LDA), ResNet-50, CNN with attention, quadratic discriminant analysis (QDA), random forest (RF), and support vector machines (SVM), in analyzing eyes that could tolerate extended interval dosing. According to a review of 50 relevant papers published between 2016 and 2023, the algorithms achieved an average automated sensitivity of 74% (95% CI: 0.55-0.92) in detecting treatment responses.

摘要

深度学习和机器学习的最新进展极大地提高了提取特征的能力,以评估糖尿病性黄斑水肿(DME)患者对抗血管内皮生长因子(VEGF)治疗的反应。在本综述中,我们探讨了这些算法如何用于区分抗VEGF注射治疗的反应者和无反应者。我们检索了包括PubMed、IEEE Xplore、BioMed、JAMA和谷歌学术在内的电子数据库,并根据纳入和排除标准,考虑了从起始到2023年8月31日相关出版物的参考文献列表。根据系统评价和Meta分析的首选报告项目(PRISMA)指南进行数据提取。结果聚焦于DME、光学相干断层扫描(OCT)、抗VEGF以及抗VEGF注射后的患者反应等关键词。本文评估了不同的机器学习和深度学习算法,包括线性判别分析(LDA)、残差网络50(ResNet-50)、带注意力机制的卷积神经网络(CNN)、二次判别分析(QDA)、随机森林(RF)和支持向量机(SVM),在分析能够耐受延长给药间隔的眼睛方面的有效性。根据对2016年至2023年发表的50篇相关论文的综述,这些算法在检测治疗反应方面的平均自动灵敏度为74%(95%置信区间:0.55-0.92)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1131/12178353/b5985546ff40/IJO-73-797-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验