Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOH44106USA.
The Tony and Leona Campane Center for Excellence in Image-Guided Surgery and Advancing Imaging ResearchCleveland Clinic Cole Eye InstituteClevelandOH44106USA.
IEEE J Transl Eng Health Med. 2021 Jul 12;9:1000113. doi: 10.1109/JTEHM.2021.3096378. eCollection 2021.
OBJECTIVE: Diabetic macular edema (DME) and retinal vein occlusion (RVO) are the leading causes of visual impairments across the world. Vascular endothelial growth factor (VEGF) stimulates breakdown of blood-retinal barrier that causes accumulation of fluid within macula. Anti-VEGF therapy is the first-line treatment for both the diseases; however, the degree of response varies for individual patients. The main objective of this work was to identify the (i) texture-based radiomics features within individual fluid and retinal tissue compartments of baseline spectral-domain optical coherence tomography (SD-OCT) images and (ii) the specific spatial compartments that contribute most pertinent features for predicting therapeutic response. METHODS: A total of 962 texture-based radiomics features were extracted from each of the fluid and retinal tissue compartments of OCT images, obtained from the PERMEATE study. Top-performing features selected from the consensus of different feature selection methods were evaluated in conjunction with four different machine learning classifiers: Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Random Forest (RF), and Support Vector Machine (SVM) in a cross-validated approach to distinguish eyes tolerating extended interval dosing (non-rebounders) and those requiring more frequent dosing (rebounders). RESULTS: Combination of fluid and retinal tissue features yielded a cross-validated area under receiver operating characteristic curve (AUC) of 0.78±0.08 in distinguishing rebounders from non-rebounders. CONCLUSIONS: This study revealed that the texture-based radiomics features pertaining to IRF subcompartment were most discriminating between rebounders and non-rebounders to anti-VEGF therapy. Clinical Impact: With further validation, OCT-based imaging biomarkers could be used for treatment management of DME patients.
目的:糖尿病性黄斑水肿(DME)和视网膜静脉阻塞(RVO)是全球视力障碍的主要原因。血管内皮生长因子(VEGF)刺激血视网膜屏障的破坏,导致黄斑内液体积聚。抗 VEGF 治疗是这两种疾病的一线治疗方法;然而,个体患者的反应程度不同。这项工作的主要目的是确定:(i)基线频域光相干断层扫描(SD-OCT)图像中单个液体和视网膜组织隔室的基于纹理的放射组学特征;(ii)对预测治疗反应最有贡献的特定空间隔室。
方法:从 PERMEATE 研究中获得的 OCT 图像的每个液体和视网膜组织隔室中提取了总共 962 个基于纹理的放射组学特征。从不同特征选择方法的共识中选择的表现最佳的特征与四种不同的机器学习分类器(线性判别分析(LDA)、二次判别分析(QDA)、随机森林(RF)和支持向量机(SVM))结合,以交叉验证的方式区分能够耐受延长间隔给药的眼睛(非反弹者)和需要更频繁给药的眼睛(反弹者)。
结果:在区分反弹者和非反弹者方面,液体和视网膜组织特征的组合产生了交叉验证的接收器操作特征曲线(AUC)为 0.78±0.08。
结论:这项研究表明,与 IRF 子隔室相关的基于纹理的放射组学特征在区分抗 VEGF 治疗的反弹者和非反弹者方面最具区分性。临床影响:经过进一步验证,OCT 基于成像生物标志物可用于 DME 患者的治疗管理。
Invest Ophthalmol Vis Sci. 2017-11-1
Indian J Ophthalmol. 2025-6-1
Eur Radiol. 2025-1
Annu Int Conf IEEE Eng Med Biol Soc. 2020-7
Eur Radiol Exp. 2018-11-14