文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多腔室空间衍生光相干断层扫描放射组学预测视网膜血管疾病继发黄斑水肿抗血管内皮生长因子治疗的持久性:初步研究结果。

Multi-Compartment Spatially-Derived Radiomics From Optical Coherence Tomography Predict Anti-VEGF Treatment Durability in Macular Edema Secondary to Retinal Vascular Disease: Preliminary Findings.

机构信息

Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOH44106USA.

The Tony and Leona Campane Center for Excellence in Image-Guided Surgery and Advancing Imaging ResearchCleveland Clinic Cole Eye InstituteClevelandOH44106USA.

出版信息

IEEE J Transl Eng Health Med. 2021 Jul 12;9:1000113. doi: 10.1109/JTEHM.2021.3096378. eCollection 2021.


DOI:10.1109/JTEHM.2021.3096378
PMID:34350068
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8328398/
Abstract

OBJECTIVE: Diabetic macular edema (DME) and retinal vein occlusion (RVO) are the leading causes of visual impairments across the world. Vascular endothelial growth factor (VEGF) stimulates breakdown of blood-retinal barrier that causes accumulation of fluid within macula. Anti-VEGF therapy is the first-line treatment for both the diseases; however, the degree of response varies for individual patients. The main objective of this work was to identify the (i) texture-based radiomics features within individual fluid and retinal tissue compartments of baseline spectral-domain optical coherence tomography (SD-OCT) images and (ii) the specific spatial compartments that contribute most pertinent features for predicting therapeutic response. METHODS: A total of 962 texture-based radiomics features were extracted from each of the fluid and retinal tissue compartments of OCT images, obtained from the PERMEATE study. Top-performing features selected from the consensus of different feature selection methods were evaluated in conjunction with four different machine learning classifiers: Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Random Forest (RF), and Support Vector Machine (SVM) in a cross-validated approach to distinguish eyes tolerating extended interval dosing (non-rebounders) and those requiring more frequent dosing (rebounders). RESULTS: Combination of fluid and retinal tissue features yielded a cross-validated area under receiver operating characteristic curve (AUC) of 0.78±0.08 in distinguishing rebounders from non-rebounders. CONCLUSIONS: This study revealed that the texture-based radiomics features pertaining to IRF subcompartment were most discriminating between rebounders and non-rebounders to anti-VEGF therapy. Clinical Impact: With further validation, OCT-based imaging biomarkers could be used for treatment management of DME patients.

摘要

目的:糖尿病性黄斑水肿(DME)和视网膜静脉阻塞(RVO)是全球视力障碍的主要原因。血管内皮生长因子(VEGF)刺激血视网膜屏障的破坏,导致黄斑内液体积聚。抗 VEGF 治疗是这两种疾病的一线治疗方法;然而,个体患者的反应程度不同。这项工作的主要目的是确定:(i)基线频域光相干断层扫描(SD-OCT)图像中单个液体和视网膜组织隔室的基于纹理的放射组学特征;(ii)对预测治疗反应最有贡献的特定空间隔室。

方法:从 PERMEATE 研究中获得的 OCT 图像的每个液体和视网膜组织隔室中提取了总共 962 个基于纹理的放射组学特征。从不同特征选择方法的共识中选择的表现最佳的特征与四种不同的机器学习分类器(线性判别分析(LDA)、二次判别分析(QDA)、随机森林(RF)和支持向量机(SVM))结合,以交叉验证的方式区分能够耐受延长间隔给药的眼睛(非反弹者)和需要更频繁给药的眼睛(反弹者)。

结果:在区分反弹者和非反弹者方面,液体和视网膜组织特征的组合产生了交叉验证的接收器操作特征曲线(AUC)为 0.78±0.08。

结论:这项研究表明,与 IRF 子隔室相关的基于纹理的放射组学特征在区分抗 VEGF 治疗的反弹者和非反弹者方面最具区分性。临床影响:经过进一步验证,OCT 基于成像生物标志物可用于 DME 患者的治疗管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a913/8328398/f30d9bf36d7b/ehler10abcdefgh-3096378.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a913/8328398/9304077597f3/ehler1abc-3096378.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a913/8328398/1a8decabe667/ehler2-3096378.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a913/8328398/7d588a60ab30/ehler3abc-3096378.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a913/8328398/be7cc35fc562/ehler4abc-3096378.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a913/8328398/ac85a9c3801a/ehler5-3096378.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a913/8328398/7158e3f09ef1/ehler6abc-3096378.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a913/8328398/d04329d05746/ehler7abc-3096378.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a913/8328398/ae7a5656fc05/ehler8abc-3096378.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a913/8328398/b4e6a3b8dc06/ehler9-3096378.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a913/8328398/f30d9bf36d7b/ehler10abcdefgh-3096378.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a913/8328398/9304077597f3/ehler1abc-3096378.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a913/8328398/1a8decabe667/ehler2-3096378.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a913/8328398/7d588a60ab30/ehler3abc-3096378.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a913/8328398/be7cc35fc562/ehler4abc-3096378.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a913/8328398/ac85a9c3801a/ehler5-3096378.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a913/8328398/7158e3f09ef1/ehler6abc-3096378.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a913/8328398/d04329d05746/ehler7abc-3096378.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a913/8328398/ae7a5656fc05/ehler8abc-3096378.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a913/8328398/b4e6a3b8dc06/ehler9-3096378.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a913/8328398/f30d9bf36d7b/ehler10abcdefgh-3096378.jpg

相似文献

[1]
Multi-Compartment Spatially-Derived Radiomics From Optical Coherence Tomography Predict Anti-VEGF Treatment Durability in Macular Edema Secondary to Retinal Vascular Disease: Preliminary Findings.

IEEE J Transl Eng Health Med. 2021

[2]
Imaging Features of Vessels and Leakage Patterns Predict Extended Interval Aflibercept Dosing Using Ultra-Widefield Angiography in Retinal Vascular Disease: Findings From the PERMEATE Study.

IEEE Trans Biomed Eng. 2021-6

[3]
Radiomics-based assessment of ultra-widefield leakage patterns and vessel network architecture in the PERMEATE study: insights into treatment durability.

Br J Ophthalmol. 2021-8

[4]
OCT-Derived Radiomic Features Predict Anti-VEGF Response and Durability in Neovascular Age-Related Macular Degeneration.

Ophthalmol Sci. 2022-5-18

[5]
Machine learning and optical coherence tomography-derived radiomics analysis to predict persistent diabetic macular edema in patients undergoing anti-VEGF intravitreal therapy.

J Transl Med. 2024-4-16

[6]
Machine Learning Can Predict Anti-VEGF Treatment Demand in a Treat-and-Extend Regimen for Patients with Neovascular AMD, DME, and RVO Associated Macular Edema.

Ophthalmol Retina. 2021-7

[7]
Association Between Hyperreflective Dots on Spectral-Domain Optical Coherence Tomography in Macular Edema and Response to Treatment.

Invest Ophthalmol Vis Sci. 2017-11-1

[8]
Prediction of response to anti-vascular endothelial growth factor treatment in diabetic macular oedema using an optical coherence tomography-based machine learning method.

Acta Ophthalmol. 2021-2

[9]
Texture-Based Radiomic SD-OCT Features Associated With Response to Anti-VEGF Therapy in a Phase III Neovascular AMD Clinical Trial.

Transl Vis Sci Technol. 2024-1-2

[10]
MEASUREMENTS OF RETINAL FLUID BY OPTICAL COHERENCE TOMOGRAPHY LEAKAGE IN DIABETIC MACULAR EDEMA: A Biomarker of Visual Acuity Response to Treatment.

Retina. 2019-1

引用本文的文献

[1]
Machine Learning Prediction of Cardiovascular Risk in Type 1 Diabetes Mellitus Using Radiomic Features from Multimodal Retinal Images.

Ophthalmol Sci. 2025-7-4

[2]
Evaluating anti-VEGF responses in diabetic macular edema: A systematic review with AI-powered treatment insights.

Indian J Ophthalmol. 2025-6-1

[3]
Unsupervised machine learning analysis of optical coherence tomography radiomics features for predicting treatment outcomes in diabetic macular edema.

Sci Rep. 2025-4-18

[4]
Stable and discriminating OCT-derived radiomics features for predicting anti-VEGF treatment response in diabetic macular edema.

Med Phys. 2025-5

[5]
Combination of optical coherence tomography-derived shape and texture features are associated with development of sub-foveal geographic atrophy in dry AMD.

Sci Rep. 2024-7-30

[6]
Optical coherence tomography-derived texture-based radiomics features identify eyes with intraocular inflammation in the HAWK clinical trial.

Heliyon. 2024-6-13

[7]
Radiomics in ophthalmology: a systematic review.

Eur Radiol. 2025-1

[8]
Multimodal deep transfer learning to predict retinal vein occlusion macular edema recurrence after anti-VEGF therapy.

Heliyon. 2024-4-10

[9]
Texture-Based Radiomic SD-OCT Features Associated With Response to Anti-VEGF Therapy in a Phase III Neovascular AMD Clinical Trial.

Transl Vis Sci Technol. 2024-1-2

[10]
Radiomics-Based Prediction of Anti-VEGF Treatment Response in Neovascular Age-Related Macular Degeneration With Pigment Epithelial Detachment.

Transl Vis Sci Technol. 2023-10-3

本文引用的文献

[1]
Automatic prediction of treatment outcomes in patients with diabetic macular edema using ensemble machine learning.

Ann Transl Med. 2021-1

[2]
Retinal Fluid Volatility Associated With Interval Tolerance and Visual Outcomes in Diabetic Macular Edema in the VISTA Phase III Trial.

Am J Ophthalmol. 2021-4

[3]
A Preliminary Study of Predicting Effectiveness of Anti-VEGF Injection Using OCT Images Based on Deep Learning.

Annu Int Conf IEEE Eng Med Biol Soc. 2020-7

[4]
Aqueous Cytokine Expression and Higher Order OCT Biomarkers: Assessment of the Anatomic-Biologic Bridge in the IMAGINE DME Study.

Am J Ophthalmol. 2021-2

[5]
Imaging Features of Vessels and Leakage Patterns Predict Extended Interval Aflibercept Dosing Using Ultra-Widefield Angiography in Retinal Vascular Disease: Findings From the PERMEATE Study.

IEEE Trans Biomed Eng. 2021-6

[6]
Radiomics-based assessment of ultra-widefield leakage patterns and vessel network architecture in the PERMEATE study: insights into treatment durability.

Br J Ophthalmol. 2021-8

[7]
Deep learning-based single-shot prediction of differential effects of anti-VEGF treatment in patients with diabetic macular edema.

Biomed Opt Express. 2020-1-28

[8]
Longitudinal Panretinal Leakage and Ischemic Indices in Retinal Vascular Disease after Aflibercept Therapy: The PERMEATE Study.

Ophthalmol Retina. 2020-2

[9]
Higher-Order Assessment of OCT in Diabetic Macular Edema from the VISTA Study: Ellipsoid Zone Dynamics and the Retinal Fluid Index.

Ophthalmol Retina. 2019-12

[10]
Radiomics: the facts and the challenges of image analysis.

Eur Radiol Exp. 2018-11-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索