Suppr超能文献

计算机断层扫描图像中纤维化病变的同源特征辅助量化:基于CT图像特征的基因表达分布预测的概念验证

Homology-feature-assisted quantification of fibrotic lesions in computed tomography images: a proof of concept for CT image feature-based prediction for gene-expression-distribution.

作者信息

Doi Kentaro, Numasaki Hodaka, Anetai Yusuke, Natsume-Kitatani Yayoi

机构信息

National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.

Graduate School of Medicine, The University of Osaka, Osaka, Japan.

出版信息

Int J Comput Assist Radiol Surg. 2025 May 28. doi: 10.1007/s11548-025-03428-8.

Abstract

PURPOSE

Computed tomography (CT) image is promising for diagnosing of interstitial idiopathic pneumonias (IIPs); however, quantification of IIPs lesions in CT images is required. This study aimed to quantitatively evaluate fibrotic lesions in CT images using homology-based image analysis.

METHODS

We collected publicly available CT images comprising 47 fibrotic images and 36 non-fibrotic images. The homology-profile (HP) image analysis method provides b0 and b1 profiles, indicating the number of isolated components and holes in a binary image. We locally applied the HP method to the CT image and generated homology-based feature (HF) maps as resultant images. The collected images were randomly divided into the tuning dataset and the testing dataset. The cut-off value for classifying the HF map for fibrotic or non-fibrotic images was defined using receiver operating characteristic (ROC) analysis with the tuning dataset. This cut-off value was evaluated using the testing dataset with accuracy, sensitivity, specificity, and precision.

RESULTS

We successfully visualized the quantification of fibrotic lesions in the HF map. The b0 HF map was more suitable for quantifying fibrotic lesions than b1. The mean cut-off value of the b0 HF map was 199, with all performances achieved at 1.0. Furthermore, the classification of the b0 HF map for fibrotic or lung cancer images achieved all maximum performances at 1.0.

CONCLUSION

This study demonstrated the feasibility of using the HF in quantitatively evaluating fibrotic lesions in CT images. Our proposed HP-based method can also be promising in quantifying the fibrotic lesions of patients with IIPs, which can be applicable to assist the diagnosis of IIPs.

摘要

目的

计算机断层扫描(CT)图像在间质性特发性肺炎(IIP)的诊断中具有前景;然而,需要对CT图像中的IIP病变进行量化。本研究旨在使用基于同源性的图像分析对CT图像中的纤维化病变进行定量评估。

方法

我们收集了公开可用的CT图像,包括47张纤维化图像和36张非纤维化图像。同源性轮廓(HP)图像分析方法提供b0和b1轮廓,分别表示二值图像中孤立成分和空洞的数量。我们将HP方法局部应用于CT图像,并生成基于同源性的特征(HF)图作为结果图像。收集的图像被随机分为调整数据集和测试数据集。使用调整数据集通过接受者操作特征(ROC)分析定义用于对纤维化或非纤维化图像的HF图进行分类的临界值。使用测试数据集评估该临界值的准确性、敏感性、特异性和精确性。

结果

我们成功地在HF图中可视化了纤维化病变的量化。b0 HF图比b1更适合量化纤维化病变。b0 HF图的平均临界值为199,所有性能指标均达到1.0。此外,b0 HF图对纤维化或肺癌图像的分类在所有性能指标上均达到最大值1.0。

结论

本研究证明了使用HF定量评估CT图像中纤维化病变的可行性。我们提出的基于HP的方法在量化IIP患者的纤维化病变方面也具有前景,可应用于辅助IIP的诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验