Suppr超能文献

基于深度学习的 CT 扫描分割预测特发性肺纤维化的疾病进展和死亡率。

Deep Learning-based Segmentation of Computed Tomography Scans Predicts Disease Progression and Mortality in Idiopathic Pulmonary Fibrosis.

机构信息

Royal Papworth Hospital, Cambridge, United Kingdom.

Qureight Ltd., Cambridge, United Kingdom.

出版信息

Am J Respir Crit Care Med. 2024 Aug 15;210(4):465-472. doi: 10.1164/rccm.202311-2185OC.

Abstract

Despite evidence demonstrating a prognostic role for computed tomography (CT) scans in idiopathic pulmonary fibrosis (IPF), image-based biomarkers are not routinely used in clinical practice or trials. To develop automated imaging biomarkers using deep learning-based segmentation of CT scans. We developed segmentation processes for four anatomical biomarkers, which were applied to a unique cohort of treatment-naive patients with IPF enrolled in the PROFILE (Prospective Observation of Fibrosis in the Lung Clinical Endpoints) study and tested against a further United Kingdom cohort. The relationships among CT biomarkers, lung function, disease progression, and mortality were assessed. Data from 446 PROFILE patients were analyzed. Median follow-up duration was 39.1 months (interquartile range, 18.1-66.4 mo), with a cumulative incidence of death of 277 (62.1%) over 5 years. Segmentation was successful on 97.8% of all scans, across multiple imaging vendors, at slice thicknesses of 0.5-5 mm. Of four segmentations, lung volume showed the strongest correlation with FVC ( = 0.82;  < 0.001). Lung, vascular, and fibrosis volumes were consistently associated across cohorts with differential 5-year survival, which persisted after adjustment for baseline gender, age, and physiology score. Lower lung volume (hazard ratio [HR], 0.98 [95% confidence interval (CI), 0.96-0.99];  = 0.001), increased vascular volume (HR, 1.30 [95% CI, 1.12-1.51];  = 0.001), and increased fibrosis volume (HR, 1.17 [95% CI, 1.12-1.22];  < 0.001) were associated with reduced 2-year progression-free survival in the pooled PROFILE cohort. Longitudinally, decreasing lung volume (HR, 3.41 [95% CI, 1.36-8.54];  = 0.009) and increasing fibrosis volume (HR, 2.23 [95% CI, 1.22-4.08];  = 0.009) were associated with differential survival. Automated models can rapidly segment IPF CT scans, providing prognostic near and long-term information, which could be used in routine clinical practice or as key trial endpoints.

摘要

尽管计算机断层扫描(CT)在特发性肺纤维化(IPF)中的预后作用已有证据,但基于影像的生物标志物并未在临床实践或临床试验中常规使用。为了使用基于深度学习的 CT 扫描分割来开发自动成像生物标志物。我们开发了四个解剖学生物标志物的分割过程,将其应用于在 PROFILE(肺纤维化的前瞻性观察临床终点研究)研究中招募的特发性肺纤维化的治疗初治患者的独特队列,并在英国进一步的队列中进行了测试。评估了 CT 生物标志物、肺功能、疾病进展和死亡率之间的关系。对 446 名 PROFILE 患者的数据进行了分析。中位随访时间为 39.1 个月(四分位间距,18.1-66.4 个月),5 年内死亡累计发生率为 277 例(62.1%)。在多个成像供应商中,所有扫描的分割成功率均达到 97.8%,层厚为 0.5-5 毫米。在四个分割中,肺容积与 FVC 的相关性最强( = 0.82;  < 0.001)。在整个队列中,肺、血管和纤维化容积均与差异 5 年生存率相关,并且在调整基线性别、年龄和生理评分后仍然存在。较低的肺容积(风险比 [HR],0.98 [95%置信区间(CI),0.96-0.99];  = 0.001)、增加的血管容积(HR,1.30 [95% CI,1.12-1.51];  = 0.001)和增加的纤维化容积(HR,1.17 [95% CI,1.12-1.22];  < 0.001)与联合 PROFILE 队列中较低的 2 年无进展生存率相关。纵向来看,肺容积下降(HR,3.41 [95% CI,1.36-8.54];  = 0.009)和纤维化容积增加(HR,2.23 [95% CI,1.22-4.08];  = 0.009)与生存差异相关。自动模型可以快速分割特发性肺纤维化 CT 扫描,提供近和长期预后信息,可用于常规临床实践或作为关键试验终点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa71/11351794/2792308c6f5e/rccm.202311-2185OCf1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验