Suppr超能文献

一种用于牛结节性皮肤病分类的自动方法。

An automatic approach for the classification of lumpy skin disease in cattle.

作者信息

Alam Fakhre, Ullah Asad, Rohaim Mohammed A, Munir Muhammad, Hussain Aftab

机构信息

Department of Computer Science and Information Technology, University of Malakand, Dir, Pakistan.

Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.

出版信息

Trop Anim Health Prod. 2025 May 28;57(5):230. doi: 10.1007/s11250-025-04475-8.

Abstract

Lumpy Skin Disease (LSD) presents significant risks and economic challenges to global cattle farming. Effective and accurate classification of LSD is essential for managing the disease and reducing its impacts. Manual diagnosis is time-consuming, labor-intensive, and requires experienced personnel. Automated classification methods provide advantages by reducing labor and improving accuracy. This study proposes an automated algorithm for LSD classification using machine learning. The method uses a carefully curated dataset of images from both LSD-infected cattle and healthy cattle. Inception V3 was employed to extract features from complex lesion patterns in infected cattle images, comparing them to healthy cattle images. Support Vector Machines (SVM) were used to classify the extracted features. The results show the model achieved an 84% accuracy rate, with precision at 80%, recall at 83%, and an F1 score of 82%. These results were compared with other machine learning models, including Logistic Regression, Random Forest, Decision Tree, and AdaBoost. SVM outperformed other models, demonstrating consistent evaluation precision at 0.84. For further enhancement, expanding the dataset with high-quality images and applying advanced machine learning algorithms like Vision Transformers (ViTs), MobileNetV2, and Visual Geometry Group (VGG) could refine automated LSD classification. The aim is to improve disease management practices in the livestock industry through better classification systems.

摘要

牛结节性皮肤病(LSD)给全球养牛业带来了重大风险和经济挑战。对牛结节性皮肤病进行有效且准确的分类对于控制该疾病及其影响至关重要。人工诊断耗时、劳动强度大且需要经验丰富的人员。自动化分类方法具有减少人力并提高准确性的优势。本研究提出了一种使用机器学习进行牛结节性皮肤病分类的自动化算法。该方法使用了精心策划的数据集,其中包含来自感染牛结节性皮肤病的牛和健康牛的图像。采用Inception V3从感染牛图像中的复杂病变模式中提取特征,并将其与健康牛图像进行比较。使用支持向量机(SVM)对提取的特征进行分类。结果表明,该模型的准确率达到84%,精确率为80%,召回率为83%,F1分数为82%。将这些结果与其他机器学习模型进行了比较,包括逻辑回归、随机森林、决策树和AdaBoost。支持向量机的表现优于其他模型,评估精度始终为0.84。为了进一步改进,用高质量图像扩展数据集并应用诸如视觉Transformer(ViT)、MobileNetV2和视觉几何组(VGG)等先进的机器学习算法,可以优化牛结节性皮肤病的自动化分类。目的是通过更好的分类系统改善畜牧业的疾病管理实践。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验