Lan Haoyu, Varghese Bino A, Sheikh-Bahaei Nasim, Sepehrband Farshid, Toga Arthur W, Choupan Jeiran
Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
Department of Radiology, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
Neuroimage. 2025 Aug 1;316:121297. doi: 10.1016/j.neuroimage.2025.121297. Epub 2025 May 26.
In multi-center neuroimaging studies, the technical variability caused by the batch differences could hinder the ability to aggregate data across sites, and negatively impact the reliability of study-level results. Recent efforts in neuroimaging harmonization have aimed to minimize these technical gaps and reduce technical variability across batches. While Generative Adversarial Networks (GAN) has been a prominent method for addressing harmonization tasks, GAN-harmonized images suffer from artifacts or anatomical distortions. Given the advancements of denoising diffusion probabilistic model which produces high-fidelity images, we have assessed the efficacy of the diffusion model for neuroimaging harmonization. While GAN-based methods intrinsically transform imaging styles between two domains per model, we have demonstrated the diffusion model's superior capability in harmonizing images across multiple domains with single model. Our experiments highlight that the learned domain invariant anatomical condition reinforces the model to accurately preserve the anatomical details while differentiating batch differences at each diffusion step. Our proposed method has been tested using T1-weighted MRI images from two public neuroimaging datasets of ADNI1 and ABIDE II, yielding harmonization results with consistent anatomy preservation and superior FID score compared to the GAN-based methods. We have conducted multiple analyses including extensive quantitative and qualitative evaluations against the baseline models, ablation study showcasing the benefits of the learned domain invariant conditions, and improvements in the consistency of perivascular spaces segmentation analysis and volumetric analysis through harmonization.
在多中心神经影像学研究中,批次差异导致的技术变异性可能会阻碍跨站点汇总数据的能力,并对研究层面结果的可靠性产生负面影响。神经影像学标准化方面的最新努力旨在最小化这些技术差距,并减少批次间的技术变异性。虽然生成对抗网络(GAN)一直是解决标准化任务的一种突出方法,但GAN标准化的图像存在伪影或解剖结构扭曲问题。鉴于去噪扩散概率模型在生成高保真图像方面的进展,我们评估了扩散模型在神经影像学标准化方面的功效。基于GAN的方法本质上是在每个模型的两个域之间转换成像风格,而我们已经证明扩散模型在使用单个模型跨多个域进行图像标准化方面具有卓越能力。我们的实验表明,学习到的域不变解剖条件增强了模型在每个扩散步骤区分批次差异的同时准确保留解剖细节的能力。我们提出的方法已使用来自ADNI1和ABIDE II两个公共神经影像学数据集的T1加权MRI图像进行测试,与基于GAN的方法相比,产生了具有一致解剖结构保留和卓越FID分数的标准化结果。我们进行了多项分析,包括针对基线模型的广泛定量和定性评估、展示学习到的域不变条件优势的消融研究,以及通过标准化在血管周围间隙分割分析和体积分析一致性方面的改进。