Suppr超能文献

通过分布匹配实现脑结构连接的一致性

Harmonization of Structural Brain Connectivity Through Distribution Matching.

作者信息

Zhou Zhen, Fischl Bruce, Aganj Iman

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston, USA.

出版信息

Hum Brain Mapp. 2025 Jun 15;46(9):e70257. doi: 10.1002/hbm.70257.

Abstract

The increasing prevalence of multi-site diffusion-weighted magnetic resonance imaging (dMRI) studies potentially offers enhanced statistical power to investigate brain structure. However, these studies face challenges due to variations in scanner hardware and acquisition protocols. While several methods for dMRI data harmonization exist, few specifically address structural brain connectivity. We introduce a new distribution-matching approach to harmonizing structural brain connectivity across different sites and scanners. We evaluate our method using structural brain connectivity data from three distinct datasets (OASIS-3, ADNI-2, and PREVENT-AD), comparing its performance to the widely used ComBat method and the more recent CovBat approach. We examine the impact of harmonization on the correlation of brain connectivity with the Mini-Mental State Examination score and age. Our results demonstrate that our distribution-matching technique effectively harmonizes structural brain connectivity while maintaining non-negativity of the connectivity values and produces correlation strengths and significance levels competitive with alternative approaches. Qualitative assessments illustrate the desired distributional alignment across datasets, while quantitative evaluations confirm competitive performance. This work contributes to the growing field of dMRI harmonization, potentially improving the reliability and comparability of structural connectivity studies that combine data from different sources in neuroscientific and clinical research.

摘要

多部位扩散加权磁共振成像(dMRI)研究的日益普及,有可能为研究脑结构提供更强的统计功效。然而,由于扫描仪硬件和采集协议的差异,这些研究面临挑战。虽然存在几种dMRI数据协调方法,但很少有专门针对脑结构连接性的方法。我们引入了一种新的分布匹配方法,用于协调不同部位和扫描仪之间的脑结构连接性。我们使用来自三个不同数据集(OASIS-3、ADNI-2和PREVENT-AD)的脑结构连接性数据评估我们的方法,并将其性能与广泛使用的ComBat方法和更新的CovBat方法进行比较。我们研究了协调对脑连接性与简易精神状态检查表得分和年龄之间相关性的影响。我们的结果表明,我们的分布匹配技术有效地协调了脑结构连接性,同时保持了连接性值的非负性,并产生了与替代方法相竞争的相关强度和显著性水平。定性评估说明了跨数据集的理想分布对齐,而定量评估证实了具有竞争力的性能。这项工作为dMRI协调这一不断发展的领域做出了贡献,有可能提高神经科学和临床研究中结合来自不同来源数据的结构连接性研究的可靠性和可比性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验