Suppr超能文献

预测 H-NS 与富含 AT 的 DNA 结合的机制和速率。

Predicting the mechanism and rate of H-NS binding to AT-rich DNA.

机构信息

Department of Chemistry, NTNU, Trondheim, Norway.

Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands.

出版信息

PLoS Comput Biol. 2019 Mar 7;15(3):e1006845. doi: 10.1371/journal.pcbi.1006845. eCollection 2019 Mar.

Abstract

Bacteria contain several nucleoid-associated proteins that organize their genomic DNA into the nucleoid by bending, wrapping or bridging DNA. The Histone-like Nucleoid Structuring protein H-NS found in many Gram-negative bacteria is a DNA bridging protein and can structure DNA by binding to two separate DNA duplexes or to adjacent sites on the same duplex, depending on external conditions. Several nucleotide sequences have been identified to which H-NS binds with high affinity, indicating H-NS prefers AT-rich DNA. To date, highly detailed structural information of the H-NS DNA complex remains elusive. Molecular simulation can complement experiments by modelling structures and their time evolution in atomistic detail. In this paper we report an exploration of the different binding modes of H-NS to a high affinity nucleotide sequence and an estimate of the associated rate constant. By means of molecular dynamics simulations, we identified three types of binding for H-NS to AT-rich DNA. To further sample the transitions between these binding modes, we performed Replica Exchange Transition Interface Sampling, providing predictions of the mechanism and rate constant of H-NS binding to DNA. H-NS interacts with the DNA through a conserved QGR motif, aided by a conserved arginine at position 93. The QGR motif interacts first with phosphate groups, followed by the formation of hydrogen bonds between acceptors in the DNA minor groove and the sidechains of either Q112 or R114. After R114 inserts into the minor groove, the rest of the QGR motif follows. Full insertion of the QGR motif in the minor groove is stable over several tens of nanoseconds, and involves hydrogen bonds between the bases and both backbone and sidechains of the QGR motif. The rate constant for the process of H-NS binding to AT-rich DNA resulting in full insertion of the QGR motif is in the order of 10(6) M-1s-1, which is rate limiting compared to the non-specific association of H-NS to the DNA backbone at a rate of 10(8) M-1s-1.

摘要

细菌中含有几种核相关蛋白,通过弯曲、包裹或桥接 DNA 将其基因组 DNA 组织成核小体。许多革兰氏阴性菌中存在的组蛋白样核小体结构蛋白 H-NS 是一种 DNA 桥接蛋白,可以通过与两个独立的 DNA 双链体结合,或者根据外部条件与同一双链体上的相邻位点结合来构建 DNA。已经鉴定出几个核苷酸序列,H-NS 可以与这些序列高度亲和结合,这表明 H-NS 偏爱富含 AT 的 DNA。迄今为止,H-NS-DNA 复合物的高度详细结构信息仍然难以捉摸。分子模拟可以通过建模结构及其在原子细节中的时间演化来补充实验。在本文中,我们报告了对 H-NS 与高亲和力核苷酸序列的不同结合模式的探索,并对相关的速率常数进行了估计。通过分子动力学模拟,我们确定了 H-NS 与富含 AT 的 DNA 结合的三种类型。为了进一步采样这些结合模式之间的转变,我们进行了复制交换过渡界面采样,提供了 H-NS 与 DNA 结合的机制和速率常数的预测。H-NS 通过保守的 QGR 基序与 DNA 相互作用,这一基序由位置 93 上的保守精氨酸辅助。QGR 基序首先与磷酸基团相互作用,然后在 DNA 小沟中的受体与 Q112 或 R114 的侧链之间形成氢键。R114 插入小沟后,QGR 基序的其余部分随之而来。QGR 基序完全插入小沟中可以稳定几十纳秒,并且涉及碱基与 QGR 基序的骨架和侧链之间的氢键。导致 QGR 基序完全插入的 H-NS 与富含 AT 的 DNA 结合的过程的速率常数约为 10(6) M-1s-1,与 H-NS 与 DNA 骨架的非特异性结合速率(10(8) M-1s-1)相比,这是限速步骤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c404/6424460/9a237d79410a/pcbi.1006845.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验