Suppr超能文献

一个按比例组织的开放图数据集。

An Open Graph Dataset Organized by Scales.

作者信息

Zhao Ying, Zou Xianzhe, Wang Xiao, Yang Zhanpeng, Wang Xuan, Zhao Xin, Zhang Ning, Huang Xin, Zhou Fangfang

机构信息

School of Computer Science and Engineering, Central South University, Changsha, China.

Qi An Xin Technology Group Inc., Layer Platform, Beijing, China.

出版信息

Sci Data. 2025 May 28;12(1):898. doi: 10.1038/s41597-025-05077-7.

Abstract

Graph-related technologies, including social networks, transportation systems, and bioinformatics, are continually evolving in various application domains. The advancement of these technologies often relies on high-quality graph datasets for validating performance, such as scalability and time/space complexity. However, existing datasets are typically categorized by domains or types, lacking an explicit organization by scales and a wide range of scale levels. This situation may hinder comprehensive performance validations. This paper introduces an open graph dataset organized by scales named OGDOS. The dataset encompasses 470 preset scale levels, covering node counts from 100 to 200,000 and edge-to-node ratios from 1 to 10. The dataset combines scale-aligned real-world graphs and synthetic graphs, offering a versatile resource for evaluating various graph-related technologies. This paper also presents the OGDOS's construction process, provides a technical validation, and discusses its limitations.

摘要

包括社交网络、交通系统和生物信息学在内的与图相关的技术,正在各个应用领域不断发展。这些技术的进步通常依赖于高质量的图数据集来验证性能,比如可扩展性和时间/空间复杂度。然而,现有的数据集通常按领域或类型分类,缺乏按规模进行的明确组织以及广泛的规模级别。这种情况可能会阻碍全面的性能验证。本文介绍了一个按规模组织的开放图数据集,名为OGDOS。该数据集包含470个预设规模级别,涵盖从100到200,000的节点数以及从1到10的边与节点比率。该数据集结合了与规模对齐的真实世界图和合成图,为评估各种与图相关的技术提供了一种通用资源。本文还介绍了OGDOS的构建过程,进行了技术验证,并讨论了其局限性。

相似文献

1
An Open Graph Dataset Organized by Scales.一个按比例组织的开放图数据集。
Sci Data. 2025 May 28;12(1):898. doi: 10.1038/s41597-025-05077-7.
4
An end-to-end bi-objective approach to deep graph partitioning.一种用于深度图划分的端到端双目标方法。
Neural Netw. 2025 Jan;181:106823. doi: 10.1016/j.neunet.2024.106823. Epub 2024 Oct 21.
5
A Functional Representation for Graph Matching.一种用于图匹配的功能表示
IEEE Trans Pattern Anal Mach Intell. 2020 Nov;42(11):2737-2754. doi: 10.1109/TPAMI.2019.2919308. Epub 2019 May 27.
6
Drug toxicity prediction model based on enhanced graph neural network.基于增强型图神经网络的药物毒性预测模型
Comput Biol Med. 2025 Feb;185:109614. doi: 10.1016/j.compbiomed.2024.109614. Epub 2024 Dec 24.
10
SGB-Net: Scalable Graph Broad Network.
IEEE Trans Neural Netw Learn Syst. 2025 Sep;36(9):17019-17033. doi: 10.1109/TNNLS.2025.3552129.

本文引用的文献

1
fCoSE: A Fast Compound Graph Layout Algorithm with Constraint Support.fCoSE:一种支持约束的快速复合图布局算法。
IEEE Trans Vis Comput Graph. 2022 Dec;28(12):4582-4593. doi: 10.1109/TVCG.2021.3095303. Epub 2022 Oct 26.
3
Preserving Minority Structures in Graph Sampling.在图采样中保留少数结构
IEEE Trans Vis Comput Graph. 2021 Feb;27(2):1698-1708. doi: 10.1109/TVCG.2020.3030428. Epub 2021 Jan 28.
4
SNAP: A General Purpose Network Analysis and Graph Mining Library.SNAP:一个通用的网络分析和图挖掘库。
ACM Trans Intell Syst Technol. 2016 Oct;8(1). doi: 10.1145/2898361. Epub 2016 Oct 3.
5
A Study of Layout, Rendering, and Interaction Methods for Immersive Graph Visualization.沉浸式图形可视化的布局、渲染及交互方法研究
IEEE Trans Vis Comput Graph. 2016 Jul;22(7):1802-1815. doi: 10.1109/TVCG.2016.2520921. Epub 2016 Jan 22.
6
Finding communities in sparse networks.在稀疏网络中寻找群落。
Sci Rep. 2015 Mar 6;5:8828. doi: 10.1038/srep08828.
7
Scale-free networks: a decade and beyond.无标度网络:十年及以后。
Science. 2009 Jul 24;325(5939):412-3. doi: 10.1126/science.1173299.
8
A method of matrix analysis of group structure.一种群体结构的矩阵分析方法。
Psychometrika. 1949 Jun;14(2):95-116. doi: 10.1007/BF02289146.
9
Growing scale-free networks with tunable clustering.具有可调聚类的无标度网络增长
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Feb;65(2 Pt 2):026107. doi: 10.1103/PhysRevE.65.026107. Epub 2002 Jan 11.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验