Suppr超能文献

用于染料木黄酮从头生物合成的模块化工程。

Modular Engineering of for De Novo Biosynthesis of Genistein.

作者信息

Meng Yonghui, Liu Xue, Zhang Lijuan, Zhao Guang-Rong

机构信息

Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China.

Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan District, Shenzhen 518055, China.

出版信息

Microorganisms. 2022 Jul 12;10(7):1402. doi: 10.3390/microorganisms10071402.

Abstract

Genistein, a nutraceutical isoflavone, has various pharmaceutical and biological activities which benefit human health via soy-containing food intake. This study aimed to construct to produce genistein from sugar via a modular engineering strategy. In the midstream module, various sources of chalcone synthases and chalcone isomerase-like proteins were tested which enhanced the naringenin production from -coumaric acid by decreasing the formation of the byproduct. The upstream module was reshaped to enhance the metabolic flux to -coumaric acid from glucose by overexpressing the genes in the tyrosine biosynthetic pathway and deleting the competing genes. The downstream module was rebuilt to produce genistein from naringenin by pairing various isoflavone synthases and cytochrome P450 reductases. The optimal pair was used for the de novo biosynthesis of genistein with a titer of 31.02 mg/L from sucrose at 25 °C. This is the first report on the de novo biosynthesis of genistein in engineered to date. This work shows promising potential for producing flavonoids and isoflavonoids by modular metabolic engineering.

摘要

染料木黄酮是一种营养类异黄酮,具有多种药理和生物学活性,可通过摄入含大豆的食物对人体健康有益。本研究旨在通过模块化工程策略构建从糖类生产染料木黄酮的体系。在中游模块中,测试了多种查尔酮合酶和类查尔酮异构酶蛋白来源,通过减少副产物的形成提高了从对香豆酸生产柚皮素的产量。上游模块通过过表达酪氨酸生物合成途径中的基因并删除竞争基因进行重塑,以增强从葡萄糖到对香豆酸的代谢通量。下游模块通过将各种异黄酮合酶和细胞色素P450还原酶配对,从柚皮素生产染料木黄酮进行重建。使用最佳配对在25℃下从蔗糖从头生物合成染料木黄酮,产量为31.02 mg/L。这是迄今为止关于工程菌中染料木黄酮从头生物合成的首次报道。这项工作显示了通过模块化代谢工程生产黄酮类化合物和异黄酮类化合物的巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d656/9319343/0e10e3128cb2/microorganisms-10-01402-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验