Suppr超能文献

一种用于预测老年慢性阻塞性肺疾病患者重症监护病房谵妄的列线图。

A nomogram for predicting delirium in the ICU among older patients with chronic obstructive pulmonary disease.

作者信息

Yu Chunchun, Li Tianye, Xu Mengying, Xu Hao, Lei Xiong, Xu Zhixiao, Hu Jianming, Zheng Xiuyun, Chen Chengshui, Zhao Hongjun

机构信息

Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.

Zhejiang Province Engineering Research Center for Endoscope Instruments and Technology Development, Department of Pulmonary and Critical Care Medicine, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, 324000, China.

出版信息

BMC Geriatr. 2025 May 28;25(1):383. doi: 10.1186/s12877-025-06049-7.

Abstract

BACKGROUND

Delirium is common among critically ill older patients with chronic obstructive pulmonary disease (COPD). This study aims to develop a nomogram model to predict the risk of ICU delirium in older patients with COPD.

METHODS

This study included 1,912 older COPD patients admitted to the ICU from the MIMIC-IV database. The patients were randomly divided into training and validation sets in a 7:3 ratio. LASSO regression, univariable and multivariable logistic regression were used to select the best predictive factors based on demographic, clinical, laboratory, and treatment data at ICU admission. A nomogram model was then constructed. The model's accuracy was evaluated using calibration curves. Its predictive performance and clinical utility were assessed using the area under the receiver operating characteristic curve (AUC), decision curve analysis (DCA), and clinical impact curves (CIC).

RESULTS

A total of 638 patients (33.4%) developed ICU delirium, with a median age of 76.00 (IQR: 71.00-83.00) years. Ten independent factors were identified for the nomogram model, including cerebrovascular disease (OR: 1.91; 95% CI, 1.38-2.64), Charlson Comorbidity Index (OR: 1.08; 95% CI, 1.02-1.13), Glasgow Coma Scale (OR: 0.82; 95% CI, 0.77-0.87), SOFA score (OR: 1.15; 95% CI, 1.07-1.22), heart rate (OR: 1.01; 95% CI, 1.01-1.02), body temperature (OR: 1.60; 95% CI, 1.14-2.24), blood urea nitrogen (OR: 1.01; 95% CI, 1.00-1.02), 24-hour urine output (OR: 1.02; 95% CI, 1.01-1.02), fentanyl (OR: 1.94; 95% CI, 1.47-2.55), and oxygen flow (OR: 1.04; 95% CI, 1.02-1.07). The model achieved an AUC of 0.86 (95% CI, 0.83-0.90) in the training set and 0.86 (95% CI, 0.84-0.88) in the validation set. The calibration curve showed good agreement between predicted and observed values (P > 0.05). DCA and CIC results indicated the model's strong predictive value and clinical applicability.

CONCLUSIONS

This study developed an intuitive and simple nomogram model to predict the risk of ICU delirium in older patients with COPD. The model can help clinicians quickly identifying high-risk delirium patients upon ICU admission, thereby optimizing early intervention and treatment strategies.

摘要

背景

谵妄在患有慢性阻塞性肺疾病(COPD)的老年危重症患者中很常见。本研究旨在建立一种列线图模型,以预测老年COPD患者发生ICU谵妄的风险。

方法

本研究纳入了1912例从MIMIC-IV数据库中入住ICU的老年COPD患者。患者按7:3的比例随机分为训练集和验证集。采用LASSO回归、单变量和多变量逻辑回归,根据入住ICU时的人口统计学、临床、实验室和治疗数据选择最佳预测因素。然后构建列线图模型。使用校准曲线评估模型的准确性。使用受试者操作特征曲线下面积(AUC)、决策曲线分析(DCA)和临床影响曲线(CIC)评估其预测性能和临床实用性。

结果

共有638例患者(33.4%)发生ICU谵妄,中位年龄为76.00(四分位间距:71.00 - 83.00)岁。为列线图模型确定了10个独立因素,包括脑血管疾病(比值比:1.91;95%置信区间,1.38 - 2.64)、Charlson合并症指数(比值比:1.08;95%置信区间,1.02 - 1.13)、格拉斯哥昏迷量表(比值比:0.82;95%置信区间,0.77 - 0.87)、序贯器官衰竭评估(SOFA)评分(比值比:1.15;95%置信区间,1.07 - 1.22)、心率(比值比:1.01;95%置信区间,1.01 - 1.02)、体温(比值比:1.60;95%置信区间,1.14 - 2.24)、血尿素氮(比值比:1.01;95%置信区间,1.00 - 1.02)、24小时尿量(比值比:1.02;95%置信区间,1.01 - 1.02)、芬太尼(比值比:1.94;95%置信区间,1.47 - 2.55)和氧流量(比值比:1.04;95%置信区间,1.02 - 1.07)。该模型在训练集中的AUC为0.86(95%置信区间,0.83 - 0.90),在验证集中为0.86(95%置信区间,0.84 - 0.88)。校准曲线显示预测值与观察值之间具有良好的一致性(P > 0.05)。DCA和CIC结果表明该模型具有较强的预测价值和临床适用性。

结论

本研究建立了一种直观、简单的列线图模型,用于预测老年COPD患者发生ICU谵妄的风险。该模型可帮助临床医生在患者入住ICU时快速识别谵妄高危患者,从而优化早期干预和治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1561/12117959/09fb0eff2899/12877_2025_6049_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验