文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Comprehensive analysis of clustering algorithms: exploring limitations and innovative solutions.

作者信息

Wani Aasim Ayaz

机构信息

School of Engineering, Cornell University, Ithaca, New York, United States.

出版信息

PeerJ Comput Sci. 2024 Aug 29;10:e2286. doi: 10.7717/peerj-cs.2286. eCollection 2024.


DOI:10.7717/peerj-cs.2286
PMID:39314716
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11419652/
Abstract

This survey rigorously explores contemporary clustering algorithms within the machine learning paradigm, focusing on five primary methodologies: centroid-based, hierarchical, density-based, distribution-based, and graph-based clustering. Through the lens of recent innovations such as deep embedded clustering and spectral clustering, we analyze the strengths, limitations, and the breadth of application domains-ranging from bioinformatics to social network analysis. Notably, the survey introduces novel contributions by integrating clustering techniques with dimensionality reduction and proposing advanced ensemble methods to enhance stability and accuracy across varied data structures. This work uniquely synthesizes the latest advancements and offers new perspectives on overcoming traditional challenges like scalability and noise sensitivity, thus providing a comprehensive roadmap for future research and practical applications in data-intensive environments.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa6/11419652/04f858122a32/peerj-cs-10-2286-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa6/11419652/363d3d28c5f4/peerj-cs-10-2286-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa6/11419652/780246fdd8dd/peerj-cs-10-2286-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa6/11419652/597fa4d88d9c/peerj-cs-10-2286-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa6/11419652/7f7799194c05/peerj-cs-10-2286-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa6/11419652/68799c851343/peerj-cs-10-2286-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa6/11419652/fc98fa656f12/peerj-cs-10-2286-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa6/11419652/7361c35d0422/peerj-cs-10-2286-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa6/11419652/d0f0e2051048/peerj-cs-10-2286-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa6/11419652/65187fc9462a/peerj-cs-10-2286-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa6/11419652/353b1ee44f22/peerj-cs-10-2286-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa6/11419652/39b0b51de29f/peerj-cs-10-2286-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa6/11419652/45c75c4b2eee/peerj-cs-10-2286-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa6/11419652/6022de100017/peerj-cs-10-2286-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa6/11419652/04f858122a32/peerj-cs-10-2286-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa6/11419652/363d3d28c5f4/peerj-cs-10-2286-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa6/11419652/780246fdd8dd/peerj-cs-10-2286-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa6/11419652/597fa4d88d9c/peerj-cs-10-2286-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa6/11419652/7f7799194c05/peerj-cs-10-2286-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa6/11419652/68799c851343/peerj-cs-10-2286-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa6/11419652/fc98fa656f12/peerj-cs-10-2286-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa6/11419652/7361c35d0422/peerj-cs-10-2286-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa6/11419652/d0f0e2051048/peerj-cs-10-2286-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa6/11419652/65187fc9462a/peerj-cs-10-2286-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa6/11419652/353b1ee44f22/peerj-cs-10-2286-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa6/11419652/39b0b51de29f/peerj-cs-10-2286-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa6/11419652/45c75c4b2eee/peerj-cs-10-2286-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa6/11419652/6022de100017/peerj-cs-10-2286-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa6/11419652/04f858122a32/peerj-cs-10-2286-g014.jpg

相似文献

[1]
Comprehensive analysis of clustering algorithms: exploring limitations and innovative solutions.

PeerJ Comput Sci. 2024-8-29

[2]
Research on load clustering algorithm based on variational autoencoder and hierarchical clustering.

PLoS One. 2024-6-13

[3]
GMHCC: high-throughput analysis of biomolecular data using graph-based multiple hierarchical consensus clustering.

Bioinformatics. 2022-5-26

[4]
A Comprehensive Survey on Deep Graph Representation Learning.

Neural Netw. 2024-5

[5]
Emergent unsupervised clustering paradigms with potential application to bioinformatics.

Front Biosci. 2008-1-1

[6]
Empowering precise advertising with Fed-GANCC: A novel federated learning approach leveraging Generative Adversarial Networks and group clustering.

PLoS One. 2024

[7]
Sampling clustering based on multi-view attribute structural relations.

PLoS One. 2024

[8]
scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.

Bioinformatics. 2023-2-14

[9]
Spike sorting algorithms and their efficient hardware implementation: a comprehensive survey.

J Neural Eng. 2023-4-14

[10]
STGNNks: Identifying cell types in spatial transcriptomics data based on graph neural network, denoising auto-encoder, and k-sums clustering.

Comput Biol Med. 2023-11

引用本文的文献

[1]
AI Approaches to Homogeneous Catalysis with Transition Metal Complexes.

ACS Catal. 2025-5-14

[2]
Automating the Analysis of Substrate Reactivity through Environment Interaction Mapping.

J Chem Inf Model. 2025-6-9

[3]
Optimizing Class Imbalance in Facial Expression Recognition Using Dynamic Intra-Class Clustering.

Biomimetics (Basel). 2025-5-8

[4]
Unsupervised machine learning analysis of optical coherence tomography radiomics features for predicting treatment outcomes in diabetic macular edema.

Sci Rep. 2025-4-18

[5]
Nanoparticle Skin Penetration: Depths and Routes Modeled In-Silico.

Small. 2025-5

[6]
Identification of Three Distinct Subgroups in Antiphospholipid Syndrome: Implication for Sex Differences and Prognostic Outcomes from a Multicenter Study.

Adv Sci (Weinh). 2025-4

本文引用的文献

[1]
Methods for dealing with unequal cluster sizes in cluster randomized trials: A scoping review.

PLoS One. 2021

[2]
Violating the normality assumption may be the lesser of two evils.

Behav Res Methods. 2021-12

[3]
Dynamic Sparse Subspace Clustering for Evolving High-Dimensional Data Streams.

IEEE Trans Cybern. 2022-6

[4]
Concept Drift Detection via Equal Intensity k-Means Space Partitioning.

IEEE Trans Cybern. 2021-6

[5]
Dimensionality reduction for visualizing single-cell data using UMAP.

Nat Biotechnol. 2018-12-3

[6]
A systematic study of the class imbalance problem in convolutional neural networks.

Neural Netw. 2018-7-29

[7]
A Survey of Data Mining and Deep Learning in Bioinformatics.

J Med Syst. 2018-6-28

[8]
Clustering Algorithms: Their Application to Gene Expression Data.

Bioinform Biol Insights. 2016-11-30

[9]
A Comparative Analysis of Community Detection Algorithms on Artificial Networks.

Sci Rep. 2016-8-1

[10]
The impact of cluster representatives on the convergence of the k-modes type clustering.

IEEE Trans Pattern Anal Mach Intell. 2013-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索