You Bolim, Huh Jihoon, Kim Yuna, Yang Mino, Kim Unjeong, Joo Min-Kyu, Hahm Myung Gwan, Lee Moonsang
Department of Materials Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
Program in Semiconductor Convergence, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
Nanoscale Horiz. 2025 Jul 21;10(8):1760-1770. doi: 10.1039/d5nh00113g.
Despite significant efforts to eliminate the von Neumann bottleneck with new two-dimensional (2D) nanomaterial-based cutting-edge device structures, there remains room for exploring alternative computing architectures that leverage 2D nanomaterials. This study introduced a groundbreaking strategy featuring a complementary metal-oxide semiconductor (CMOS)-integrable and reconfigurable ambipolar 2D tellurene (Te) transistor toward non-von Neumann computing architecture. The innovative scenario integrated seamlessly with CMOS technology, utilizing the p/n-switchable ambipolar characteristics inherited from precise Fermi-level alignment thermal atomic layer deposition. Further, the architecture exhibited remarkable synaptic behavior while maintaining the conventional inverter performance within a compact single 2D Te device architecture. Expanding these findings, we demonstrated a compact programmable CMOS inverter with reduced spatial complexity and also visualized the construction of diverse complementary logic-in-memory computing. The results of this study pave the way for revolutionary in-memory computing that transcends the boundaries of the von Neumann architecture based on 2D nanomaterials.
尽管人们付出了巨大努力,通过新型二维(2D)纳米材料基前沿器件结构来消除冯·诺依曼瓶颈,但仍有空间探索利用二维纳米材料的替代计算架构。本研究提出了一种开创性策略,其特点是采用一种可与互补金属氧化物半导体(CMOS)集成且可重构的双极二维碲化锑(Te)晶体管,以实现非冯·诺依曼计算架构。这种创新方案与CMOS技术无缝集成,利用精确费米能级对准的热原子层沉积所继承的p/n可切换双极特性。此外,该架构在紧凑的单一二维碲化锑器件架构中展现出显著的突触行为,同时保持了传统反相器性能。扩展这些发现,我们展示了一种具有降低空间复杂度的紧凑型可编程CMOS反相器,并可视化了各种互补逻辑内存储计算的构建。本研究结果为基于二维纳米材料的、超越冯·诺依曼架构边界的革命性内存计算铺平了道路。