Zhang Nannan, Zhang Zhi, Feng Rui, Chen Yiming, Li Qiushang, Yang YiCheng, Jiang Meimei, Zhao Wenjie, Zhu Zhentao, Zhou Xiaoli, Li Zejun
School of Physics, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 211189, China.
School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
ACS Nano. 2025 Jul 8;19(26):24109-24121. doi: 10.1021/acsnano.5c07480. Epub 2025 Jun 26.
Neuromorphic computing, inspired by the brain's energy-efficient parallelism processing, offers a transformative alternative to overcome von Neumann bottlenecks. A critical challenge is to replicate the dynamic plasticity of biological synapses using artificial transistor devices capable of nonvolatile, stimulus-tunable charge transport. Existing synaptic transistors mainly rely on mechanisms such as ion migration, ferroelectric switching, floating gate coupling or charge trapping, yet these approaches are inherently constrained by issues like ionic diffusion, polarization fatigue, and charge leakage─that degrade reliability and memory retention. Here, we report a gate-tunable polarization gradient in two-dimensional (2D) polar materials, which can serve as a different mechanism to simulate biological synapses. The gate-controlled out-of-plane polarization in 2D polar materials leads to hysteresis-type polarity potential modulation, enabling nonvolatile charge transport. This mechanism allows the device to achieve a memory retention time of approximately 331 s at room temperature, surpassing most conventional synaptic transistors and rivaling the best-reported synaptic systems. Moreover, this polarization gradient-modulated synaptic transistor exhibits exceptional operational resilience, maintaining switching ratios over 10-10 across 150-300 K─enabling robust emulation of both short- and long-term synaptic plasticity under extreme conditions and also sustains stable synaptic responses over 2000 gate-pulse cycles, demonstrating excellent cyclic endurance. Our study not only shows a gate-controlled out-of-plane polarization phenomenon in 2D polar materials but also presents a different materials design strategy and operating mechanism for high-performance artificial synaptic devices, toward energy-efficient, biologically inspired computing architectures.
受大脑高效并行处理能力启发的神经形态计算,为克服冯·诺依曼瓶颈提供了一种变革性的替代方案。一个关键挑战是使用能够进行非易失性、刺激可调电荷传输的人工晶体管器件来复制生物突触的动态可塑性。现有的突触晶体管主要依赖离子迁移、铁电开关、浮栅耦合或电荷俘获等机制,但这些方法本质上受到离子扩散、极化疲劳和电荷泄漏等问题的限制,这些问题会降低可靠性和记忆保持能力。在此,我们报道了二维(2D)极性材料中的栅极可调极化梯度,它可以作为一种不同的机制来模拟生物突触。二维极性材料中栅极控制的面外极化会导致滞后型极性电位调制,从而实现非易失性电荷传输。这种机制使该器件在室温下的记忆保持时间约为331秒,超过了大多数传统突触晶体管,与报道的最佳突触系统相当。此外,这种极化梯度调制的突触晶体管表现出出色的操作弹性,在150 - 300 K范围内的开关比保持在10 - 10以上,能够在极端条件下稳健地模拟短期和长期突触可塑性,并且在超过2000个栅极脉冲周期内维持稳定的突触响应,展示出优异的循环耐久性。我们的研究不仅展示了二维极性材料中的栅极控制面外极化现象,还为高性能人工突触器件提出了一种不同的材料设计策略和操作机制,朝着节能、受生物启发的计算架构发展。