Taguchi Shodai, Matsuzawa Ryosuke, Suda Yasuyuki, Irie Kenji, Ozaki Haruka
Ph.D. Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, Japan.
Department of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
MicroPubl Biol. 2025 May 13;2025. doi: 10.17912/micropub.biology.001566. eCollection 2025.
Assessing the impact of experimental parameters like pipetting speed is essential in life science research but challenging in manual experiments. Recent advancements in laboratory automation enable precise control and systematic evaluation of these parameters. Here, we employed the Opentrons OT-2, an affordable, open-source liquid handling robot, to systematically investigate the effect of pipetting speed on growth and gene expression in the budding yeast . Growth assays revealed no significant differences across the tested pipetting speeds (ANOVA, p > 0.05). RNA-seq analysis corroborated these findings, demonstrating highly similar gene expression profiles across all 24 samples (minimum Pearson correlation coefficient = 0.9528), with no differentially expressed genes identified by generalized linear model analysis (false discovery rate > 0.01). Our results highlight the utility of robotic platforms in optimizing experimental parameters, improving reproducibility, and enhancing accuracy in biological research, thus providing valuable insights for future applications.
评估移液速度等实验参数的影响在生命科学研究中至关重要,但在手动实验中具有挑战性。实验室自动化的最新进展能够对这些参数进行精确控制和系统评估。在这里,我们使用了经济实惠的开源液体处理机器人Opentrons OT-2,系统地研究移液速度对芽殖酵母生长和基因表达的影响。生长试验表明,在测试的移液速度范围内没有显著差异(方差分析,p>0.05)。RNA测序分析证实了这些发现,表明所有24个样本的基因表达谱高度相似(最小皮尔逊相关系数=0.9528),通过广义线性模型分析未发现差异表达基因(错误发现率>0.01)。我们的结果突出了机器人平台在优化实验参数、提高可重复性和增强生物学研究准确性方面的效用,从而为未来应用提供了有价值的见解。