Yang Zijian, Guo Changyuan, Li Jiayi, Li Yalun, Zhong Lei, Pu Pengming, Shang Tongxuan, Cong Lin, Zhou Yongxin, Qiao Guangdong, Jia Ziqi, Xu Hengyi, Cao Heng, Huang Yansong, Liu Tianyi, Liang Jian, Wu Jiang, Ma Dongxu, Liu Yuchen, Zhou Ruijie, Wang Xiang, Ying Jianming, Zhou Meng, Liu Jiaqi
Institute of Genomic Medicine, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China.
Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
Adv Sci (Weinh). 2025 Aug;12(31):e02833. doi: 10.1002/advs.202502833. Epub 2025 May 29.
Genetic testing for pathogenic germline variants is critical for the personalized management of high-risk breast cancers, guiding targeted therapies and cascade testing for at-risk families. In this study, MAIGGT (Multimodal Artificial Intelligence Germline Genetic Testing) is proposed, a deep learning framework that integrates histopathological microenvironment features from whole-slide images with clinical phenotypes from electronic health records for precise prescreening of germline BRCA1/2 mutations. Leveraging a multi-scale Transformer-based deep generative architecture, MAIGGT employs a cross-modal latent representation unification mechanism to capture complementary biological insights from multimodal data. MAIGGT is rigorously validated across three independent cohorts and demonstrated robust performance with areas under receiver operating characteristic curves of 0.925 (95% CI 0.868 - 0.982), 0.845 (95% CI 0.779 - 0.911), and 0.833 (0.788 - 0.878), outperforming single-modality models. Mechanistic interpretability analyses revealed that BRCA1/2-mutated associated tumors may exhibit distinct microenvironment patterns, including increased inflammatory cell infiltration, stromal proliferation and necrosis, and nuclear heterogeneity. By bridging digital pathology with clinical phenotypes, MAIGGT establishes a new paradigm for cost-effective, scalable, and biologically interpretable prescreening of hereditary breast cancer, with the potential to significantly improve the accessibility of genetic testing in routine clinical practice.
对致病性种系变异进行基因检测对于高危乳腺癌的个性化管理、指导靶向治疗以及对高危家庭进行级联检测至关重要。在本研究中,提出了MAIGGT(多模态人工智能种系基因检测),这是一个深度学习框架,它将来自全切片图像的组织病理学微环境特征与电子健康记录中的临床表型相结合,用于精确预筛查种系BRCA1/2突变。MAIGGT利用基于多尺度Transformer的深度生成架构,采用跨模态潜在表示统一机制从多模态数据中获取互补的生物学见解。MAIGGT在三个独立队列中经过严格验证,在受试者操作特征曲线下面积分别为0.925(95%CI 0.868 - 0.982)、0.845(95%CI 0.779 - 0.911)和0.833(0.788 - 0.878),表现出强大的性能,优于单模态模型。机制可解释性分析表明,BRCA1/2突变相关肿瘤可能表现出不同的微环境模式,包括炎症细胞浸润增加、基质增殖和坏死以及核异质性。通过将数字病理学与临床表型相联系,MAIGGT建立了一种具有成本效益、可扩展且具有生物学可解释性的遗传性乳腺癌预筛查新范式,有可能显著提高常规临床实践中基因检测的可及性。