Suppr超能文献

利用组织学图像描绘的 TME 通过深度学习系统改善癌症预后。

Harnessing TME depicted by histological images to improve cancer prognosis through a deep learning system.

机构信息

Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai 200240, China.

School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

Cell Rep Med. 2024 May 21;5(5):101536. doi: 10.1016/j.xcrm.2024.101536. Epub 2024 May 1.

Abstract

Spatial transcriptomics (ST) provides insights into the tumor microenvironment (TME), which is closely associated with cancer prognosis, but ST has limited clinical availability. In this study, we provide a powerful deep learning system to augment TME information based on histological images for patients without ST data, thereby empowering precise cancer prognosis. The system provides two connections to bridge existing gaps. The first is the integrated graph and image deep learning (IGI-DL) model, which predicts ST expression based on histological images with a 0.171 increase in mean correlation across three cancer types compared with five existing methods. The second connection is the cancer prognosis prediction model, based on TME depicted by spatial gene expression. Our survival model, using graphs with predicted ST features, achieves superior accuracy with a concordance index of 0.747 and 0.725 for The Cancer Genome Atlas breast cancer and colorectal cancer cohorts, outperforming other survival models. For the external Molecular and Cellular Oncology colorectal cancer cohort, our survival model maintains a stable advantage.

摘要

空间转录组学 (ST) 提供了对肿瘤微环境 (TME) 的深入了解,TME 与癌症预后密切相关,但 ST 在临床上的应用有限。在这项研究中,我们提供了一个强大的深度学习系统,可基于组织学图像为没有 ST 数据的患者补充 TME 信息,从而实现精确的癌症预后。该系统提供了两种连接方式,以弥合现有差距。第一种是集成图和图像深度学习 (IGI-DL) 模型,该模型通过组织学图像预测 ST 表达,与五种现有方法相比,在三种癌症类型上的平均相关性提高了 0.171。第二种连接方式是基于空间基因表达描述的癌症预后预测模型。我们的生存模型使用预测的 ST 特征图,在癌症基因组图谱乳腺癌和结直肠癌队列中的一致性指数分别达到 0.747 和 0.725,优于其他生存模型。对于外部的分子和细胞肿瘤学结直肠癌队列,我们的生存模型保持了稳定的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c269/11149411/7fc816ce1a2e/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验