Mobaseri Anahita, Kumar Satish, Cheng Xiang
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455.
St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN 55414.
Proc Natl Acad Sci U S A. 2025 Jun 3;122(22):e2500163122. doi: 10.1073/pnas.2500163122. Epub 2025 May 29.
The maximum spreading of an impacting liquid drop is a key metric for characterizing the fundamental fluid process of drop impact. While extensively studied for Newtonian liquids, how far a non-Newtonian drop can spread upon impacting a solid substrate remains an open question. Here, by combining simulations, experiments, and scaling analyses, we establish a general framework for predicting the maximum spreading of drops of generalized Newtonian liquids, encompassing both shear-thinning and shear-thickening behaviors. Through an analysis of the energy budget at maximum spreading, we identify a characteristic shear rate that governs the viscous dissipation during drop impact. The finding allows us to map the spreading of non-Newtonian drops onto that of Newtonian drops, revealing the quantitative dependence of the maximum spreading diameter on various impact parameters and rheological properties of liquids. Our study addresses the long-standing challenge of understanding the impact dynamics of non-Newtonian drops, and provides valuable guidance for designing non-Newtonian liquids to achieve desired impact outcomes.
冲击液滴的最大铺展是表征液滴冲击基本流体过程的关键指标。虽然对牛顿液体进行了广泛研究,但非牛顿液滴在冲击固体基底时能铺展多远仍是一个悬而未决的问题。在此,通过结合模拟、实验和标度分析,我们建立了一个预测广义牛顿液体液滴最大铺展的通用框架,涵盖了剪切变稀和剪切增稠行为。通过对最大铺展时的能量收支分析,我们确定了一个控制液滴冲击过程中粘性耗散的特征剪切速率。这一发现使我们能够将非牛顿液滴的铺展映射到牛顿液滴的铺展上,揭示了最大铺展直径对各种冲击参数和液体流变性质的定量依赖关系。我们的研究解决了理解非牛顿液滴冲击动力学这一长期存在的挑战,并为设计非牛顿液体以实现所需的冲击结果提供了有价值的指导。